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% Dear Drs. Gibson & Schild:

%

% While I really wish that you had done this, I felt that somebody needed

% to look at the partial differential equations that govern the motion of

% fluid elements. So I did. I find that there is no instability at your

% scales. Not being an expert, I took a long time, and I may have done it
% wrong, but unless you can do it better your paper will not be accepted.
%

Note (CHG): The linear stability perturbation analysis of Professor Wright is
correct. Itis simply not relevant to turbulence, which is an intrinsically
nonlinear process. Turbulent processes must be described differently.

% -- Edward L. (Ned) Wright, Scientific Editor (310)825-5755

% Professor of Physics & Astronomy  FAX:(310)825-6853

% UCLA, Los Angeles CA 90095-1562 apjelw@astro.ucla.edu

% FedeX: Math-Sciences 8959, UCLA Astronomy, Los Angeles CA 90095-1562
%
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The equations for hydrodynamics combined with gravity in a stationary
background are:



\be

\frac{\partial\rho}{\partial t} + \vec{\nabla}\cdot(\rho \vec{v}) =0
\label{eq:conmass}

\ee

for conservation of mass, and

\be

\rho\left(\frac{\partial\vec{v}}{\partial t} +
(\vec{v}\cdot\vec{\nabla})\vec{v}\right)

= -\rho\vec{\nabla}\phi -\vec{\nabla}P + \eta\nabla"2\vec{v} +
(\zeta + \eta/3)\vec{\nabla}(\vec{\nabla}\cdot\vec{v})

\ee

for conservation of momentum (or $F= ma$), and Poisson's equation:
\be

\nabla”2\phi = 4\pi G\rho

\ee

Note that $\eta$ and $\zeta$ are the dynamical viscosity coefficients,
and both must be non-negative.

A thermal conduction or entropy equation is also needed.

The temperature will rise because of three effects: one is the conduction

of heat, the second is the energy input from viscous dissipation, the third

is adiabatic compression. These give

\be

\frac{\partial T}{\partial t}

+\vec{v}\cdot\vec{\nabla}T

= \frac{1}{C_v}\left(\kappa \nabla”2 T
+\sum_{ik}{\sigma_{ik}\frac{\partial v_k}{\partial x_i}}\right) + (\gamma-1)
\frac{T\partial\rho}{\rho\partial t}

\ee

where $\gamma$ is the ratio of specific heats,

$\sigma$ is the stress tensor, and the term with $\sigma$ represents viscous
friction.

Now linearize using $\delta = \Delta\rho/\rho_\circ$,

$\tau = \Delta T/T_\circ$, $\Delta P = P_\circ(\delta+\tau)$, and by
dropping all the $\vec{v}\cdot\vec{\nabla}$ terms plus the viscous
dissipation which are all second order. Finally assume that all

time and spatial variations have the form $\exp(i\vec{k}\cdot\vec{x}-st)$.
For velocities perpendicular to $\vec{k}$ this gives

\bea

-s v & = & -\frac{\eta}{\rho_\circ} k"2 v

\nonumber\\

-s \tau & = & -\frac{\kappa}{\rho_\circ C_v} k"2 \tau

\eea

so these modes are damped at a rate of $s = \nu k"2$ and

$\nu_T k*2$ where $\nu$ is the



kinematic viscosity $\eta/\rho$ and $\nu_T = \kappa/(\rho C_v)$ is the thermal
diffusivity.

For velocities parallel to $\vec{k}$

there are density variations which couple to temperature and velocity, giving
\bea

-s v & = & -ik\frac{P_\circ}{\rho_\circ}(\delta + \tau) + i

\frac{4\pi G\rho_\circ}{k}\delta - \frac{(4/3)\eta + \zeta}{\rho_\circ} k"2 v
\nonumber)\

-s \delta & = & -ik v

\nonumber\\
-s\tau & = & -\nu_T k"2 \tau -(\gamma-1)s\delta
\eea

Change the definition of $\nu$ to $[(4/3)\eta+\zeta] /\rho$,

and eliminate $\tau$ and $v$, giving

\be

\left(s"3 - \left[(\nu+\nu_T)k”"2\right]s"2 +

\left[\frac{\gamma P_\circ}{\rho_\circ}k"2

-4\pi G \rho_\circ - \nu\nu_T k”*4\right]|s

-\left[\nu_T k"2 (k”*2\frac{P_\circ}{\rho_\circ}-4\pi G\rho_\circ)\right]\right)
\delta=0

\ee

This gives a cubic polynomial to solve for $s$.

Defining $c_\circ = \sqrt{P_\circ/\rho_\circ}$, $s_\circ =

\sqrt{4\pi G\rho_\circ}$, $k_\circ = s_\circ/c_\circ$, $y = k/k_\circ$,

$z =s/s_\circ$, $N_T = \nu_T s_\circ/c_\circ"2$

and $N = \nu s_\circ/c_\circ*2$ gives

\be

z"3 - [(N+N_T)y"2]z*2 - [1 - \gamma y*2 - NN_T y*4]z + N_T y*2(1-y*2) =0
\ee

For argon at STP I get $s_\circ = 3.87 \times 10*{-5}$~sec$"{-1}$,
$c_\circ = 2.38 \times 10" 4$~cm/sec, and $N_T = 1.97 \times 10°{-14}$.
[ haven't found $\zeta$ in my handbooks, so I just used $\nu = \eta/\rho$
to get $N = 8.05 \times 107{-15}$.

It is pretty simple to solve for $z$, and for $y > 1/\sqrt{\gamma}$ there is
one real root and two complex conjugate roots. All have positive real parts,
so all are damped modes. There is no instability except for the Jeans
instability at $y < 1/\sqrt{\gamma}$.

The damping grows approximately quadratically with $y$.

The damping of the acoustic modes is $\approx (0.2 N_T+ 0.5 N)y”2$ while the
non-pressure mode damping rate is $\approx 0.6 N_T y"2$.

Your length scale $L_{GIV}$ corresponds to $N y*2 = 13, while $L_{SD}$
corresponds to $N_T y2 = 1§.

Thus all that happens at your scales is that the damping becomes

faster than free fall so $\Re(z) > 1$.
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