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Abstract

This paper explores the consequences of the hypothesis that time might

be logarithmic in absolute time, the age of the universe. Newton’s laws,

Maxwell’s equations and certain relativistic Einstein’s relations are con-

sidered. Two versions of logarithmic time are explored: first where the

physical laws are written in fixed space, and second where space itself is

expanding. Both imply that what we thought were physical constants like

the gravitational constant and the speed of light are time-dependent in

linear time, and only constant when derived in log-time coordinates. New

definitions of mass, velocity and acceleration are also needed. Implications

for dark matter and dark energy could be profound.

1 Introduction

The description of a universe evolving in ‘epochs’ of logarithmic time is familiar
to every cosmologist (see Table 1 taken from Wikipedia [10]). There appears to
be no evidence that it has ever been previously considered that logarithmic time
should be applied to physical laws. This paper simply explores the implications
and consequences if our physical laws should have been written using log-time
as well.

The idea of time varying logarithmically has been present in turbulence
theory for some time, but only recently recognized [3]. There it is the growth of
length scales with time in the decaying homogeneous turbulence which dictates
that turbulence evolves in logarithmic time increments. In effect ‘time’ slows
down as the turbulence decays. Originally it was thought that perhaps such
‘solutions’ applied to the universe as well, and indeed they might. If so, what
we think we perceive as the universe expanding might simply be the scales
growing – as in the turbulence solutions. But this paper explores an entirely
different idea – that time itself might be logarithmic. And that perhaps the
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Log-time Seconds after the Big Bang Period

-45 to -40 10−45 to 10−40 Plank Epoch
-40 to -35 10−40 to 10−35

-35 to -30 10−35 to 10−30 Epoch of the Grand
-30 to -25 10−30 to 10−25 Unification
-25 to -20 10−25 10 10−20

-20 to -15 10−20 to 10−15

-15 to -10 10−15 to 10−10 Electroweak Epoch
-10 to -5 10−10 10 10−5

-5 to 0 10−5 to 10−0 Hadron Epoch
0 to +5 100 to 105 Lepton Epoch

+5 to + 10 105 to 1010 Epoch of Nucleosynthesis
+10 to +15 1010 to 1015 Epoch of Galaxies
+15 to +20 1015 to 1020

Table 1: Each row is defined in seconds after the Big Bang epochs of logarithmic
time in cosmology with earliest at the top. The present time is approximately
4.3× 1017 seconds after the Big Bang.[10]

laws of physics should have been written using logarithmic time. Note that we
are not talking about simply a coordinate transformation of existing equations
and laws here, but instead completely new equations and laws. But equations
and laws close enough to those we have believed for over a century now that we
would have accepted them as being accurate descriptions of nature.

The most important difference in a log-time universe from a linear time one
would be that we must modify our definition of mass. And of course velocity
and acceleration as well. This will be seen to have no measurable consequences
over the span of our human existence. But it has great consequences for how we
interpret the results of applying our physical laws to astronomical observations
of events that happened long ago. In particular, when viewed using linear time,
mass will appear to us to be missing, even when it is not. The gravitational
constant will appear to be time-dependent. And the speed of light will be
slowing down. Also the universe might appear to be expanding, even if it is not.

This paper is organized in three parts. First it defines logarithmic time
and its relation to absolute time (as measured from a beginning). Then it
examines the consequences for two of our physical laws if they should have
been written as log-time but in fixed space variables. And finally it considers
how things might be different if we had to write our laws in both log-time and
spatially changing coordinates. An attempt has been made to make this as
understandable as possible to those with even a high school and early college
level physics background.
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2 The hypothesis of logarithmic time

It is hypothesized that a cosmos time, say τ , might describe the cosmos and all
physical laws governing it. It is further postulated that this cosmic time varies
as the logarithm of t/to; i.e.,

τ = ln t/to (1)

where t is the time (or absolute time) measured in linear increments since the
beginning at t = 0. to is any convenient time scale and sets the units of t
(e.g., seconds or years). The exact beginning chosen is arbitrary, but for our
purposes the Big Bang is probably acceptable. No quantum mechanical effects
will be considered (although they could be) so the equations considered herein
apply only to any post-inflationary period, even though time itself could vary
logarithmically even to the beginning of time.

3 Would we have noticed any difference?

Physics (and Mechanics in particular) are mostly concerned with time differ-
ences. But any cosmic (or logarithmic) time difference between two cosmic
times, say τp and τp + δτ , can expressed in linear time increments by the differ-
ence of their Taylor series expansions; i.e.,

δτ = ln[(tp + δt)/to]− ln[tp/to] (2)

= ln[(tp/to)(1 + δt/tp)]− ln(tp/to) (3)

= ln(tp/to) + ln(1 + δt/tp)− ln(tp/to) (4)

≈ (δt/tp) + (δt/tp)
2 + · · · (5)

where tp and tp + δtp are the corresponding absolute times.
It is estimated that there have been approximately 13.7 billion years (tp ≈

4.3 × 1017 s) since the Big Bang. Mankind has only been on the earth for
approximatly 250,000 years. So even if we had been keeping careful track since
then the differences we would have noticed between the hypothesized cosmic
time and linear time would have been δt/tp ≈ 2.5×105/13.7×1012 ≈ 3.4×10−8.
And the differences we would have needed to observe to discover a discrepancy
are the square of this, or of order 10−15. But we have been doing mechanics for
only the past 500 years, so even had we started measuring carefully at Galileo,
δt/tp ≈ 500/13.7×1012 = 3.6×10−11. So the leading error term would have been
of order 10−21, and clearly beyond our ability to distinguish from experimental
data alone.

‘Physical laws’ are descriptions of experiments, and generally cannot be
derived from more fundamental considerations. So the point of the above is
that time could have been logarithmic all along, but we might have never sus-
pected nor noticed. And even if we had, new ideas which challenge those long-
established have seldom been welcomed with open minds [7].
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4 ‘Velocity’ and displacement in logarithmic time

Velocity depends on time derivatives – linear ones according our history. But
suppose it should be computed in logarithmic time increments. Tben we should
have been taking logarithmic time derivatives of spatial position change. Note
that throughout the remainder of this paper quantities denoted by ∗ will identify
logarithmic derivatives, or constants and quantities associated with equations
written using logarithmic time.

For example if a body is moving though space and its coordinates can be
given by ~x = ~xp(t) = ~Xp(τ), then the proper cosmic velocity, say ~V ∗, would
be given by:

~V ∗ =
d ~Xp

dτ
= t

d ~xp

dt
= t ~v (6)

where again t is absolute time and ~v is the velocity we would have computed
with normal linear time increments. But in our post-Newton era we would
have never known the difference, even if it mattered for physics, because t is
effectively constant (to one part in 1011 or less) during the span of our human
existence.

It follows immediately that any displacement field between two times, say
τ1 and τ2, is given by the logarithmic time integral of ~V ∗; i.e.,

~Xp(τ2)− ~Xp(τ1) =

∫ τ2

τ1

~V ∗(τ)dτ =

∫ t2

t1

[tvg(t)]
dt

t
=

∫ t2

t1

vg(t)dt, (7)

which is the linear time result.
We note for future use the relation, c∗ = t c, between a logarithmic speed of

light, c∗ and the usual linear speed of light, c. Clearly both cannot be constant.
Any difference of course would be virtually impossible to determine – at least
without looking far back past the span of our human existence. But if c∗ is the
constant one (as will be suggested in Section 10 below), a glance at the earliest
times in Table 1 shows that c = c∗/t will produce the extraordinarily large
magnitudes for the speed of light near the Big Bang suggested as necessary by
Albrect and Magueijo [1] from other considerations.

5 Accelerations in logarithmic time

A logarithmic acceleration would be given by:

~A∗ =
d ~V ∗

dτ
=

d2 ~Xp

d ln(t/to)2
(8)

= t2
d2~xp

dt2
+ t

dxp

dt
(9)

= t2
{

~ap +
1

t
~vp

}

(10)
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If we assume that |~vp| is bounded by the speed of light, say c ≈ 3 × 108 m/s,
and in our human era of physics t > 1017s, then contribution of the last term is
of order 10−9 m/s2 or less.

6 A logarithmic time replacement for Newton’s

Law

If time were indeed logarithmic, then our replacement for Newton’s Law prob-
ably should be:

~f = m∗
dV ∗

p

dτ
= m∗

d2Xp

dτ2
(11)

where m∗ is the real cosmic mass, the relation of which to what we have believed
to be mass, say m, is derived below.

Expanding equation 11 yields:

~f = m∗
dV ∗

p

dτ
= m∗

d2Xp

dτ2
(12)

= m∗t2
{

d2~xp

dt2
+

1

t

dxp

dt

}

(13)

≈ [m∗t2] ~ap (14)

The last term on the right-hand-side of equation 13 would have most probably
have not been noticed by any experimentalist, nor measurable even if they
were seeking to find it. On the other hand, this term lends itself easily to
a perturbation analysis, and might well be used to explain some long-noted
orbital anomaly. Or to disprove the idea of logarithmic time entirely.

To summarize this section, if time is logarithmic, what we thought previously
was the mass, m, is really the true cosmic mass, m∗, times the age of the universe
squared; i.e.,

m ≈ m∗t2 (15)

Clearly the farther back we travel in time for our observations, the more im-
portant the departures from the classical Newton’s law become. Moreover any
attempt to determine mass by balancing the equations using observations of
events a long time ago would have appeared to have mass missing. And the
farther back in time we look, the worse it would seem to be. We will explore
this further in the discussions below of Kepler’s law and the virial theorem.

An interesting consequence of our definitions of cosmic mass and velocity
is that kinetic energy remains the same in both log and linear time. Just the
distribution among mass and speed differs. I.e,

m|~v|2/2 = m∗| ~V ∗|2/2. (16)

And since the speed of light will need to be measured in cosmic time increments
as well; mc2 = m∗c2

∗
as well, since c∗ = t c.
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7 Gravity and mass

There is nothing fundamental about gravity which changes if we change our
equations to reflect a dependence on logarithmic time. We would need, however,
to change the definition of the gravitational constant to reflect the differences
in the definition of mass. It is not the gravitational force which changes, but
definitions of the masses we associate with a given force; i.e., m∗ instead of m.

Also there is no reason to assume our previous experiments to determine G
are incorrect, only that the definitions of accelerated mass we have associated
with a given gravitational attraction need to change. We should be able to asso-
ciate a new gravitational constant, say G∗, with the masses m∗ by incorporating
the appropriate factors of t when the measurements were made, say tp.

Newton’s gravitational law is commonly written as:

F = G
m1m2

r2
(17)

where G = 6.67408× 10−11 m3/kg s to one part in 4.7× 10−5.
If time were logarithmic, then m = m∗t2. So we should rewrite Newton’s

gravitational law as:

F = G∗
m∗

1
m∗

2

r2
(18)

where G∗ the new log-time gravitational constant.
Clearly our old linear time gravitational constant, G, is not so constant after

all since

G = G∗ t4, (19)

where we have absorbed the time dependence from them’s into G. Interestingly,
this produces values of (1/G)dG/dt of the same order of magnitude as that
proposed many years ago by Brans and Dicke [2] (see also Haymes [6]) in trying
to resolve special and general relativity.

Since our measurements have been made in the present time, say tp, we need
to include only the factor of t4p into our definition of G∗ where tp is the absolute
time the measurement of G was made. Thus our best estimate for G∗ is:

G∗ = G t4p (20)

The estimated age of the universe in linear seconds is approximately tp ≈
4.320432× 1017 seconds, so:

G∗ = Gt4p ≈ 3.4842570 × 6.6705× 10−11 = 2.325× 1062 m3s3/kg (21)

Note that the units of cosmic mass, m∗, are kg/s2. Clearly given the size of
the numbers, there must be a better choice of units. Also, since G enters the
Planck scale definitions, introduction of G∗ will change some of these as well.

So in summary, there appears to be nothing fundamentally different about
gravity. BUT, as we shall see below, the different definitions of mass, m∗, and
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the gravitational constant, G∗, have enormous consequences for the application
of our physical laws at different cosmic times.

8 Rotating dynamics and Kepler’s third law

The laws for rotating systems are just a special case of the equations for linear
momentum obtained by defining angular velocities and taking moments of New-
ton’s Law. The only essential difference for logarithmic time is that the angular
logarithmic velocity is defined as ~V ∗ = ~Ω∗ × ~r instead of ~v = ~Ω × ~r, where
|~Ω| = dθ/dt where θ is the angular position and |~Ω∗| = dθ/dτ is its log-time

equivalent. The angular acceleration is similarly defined by ~Ω∗ × ~Ω∗ ×~r instead
of ~Ω× ~Ω× ~r.

So for a simple mass rotating about an axis of rotation the appropriate form
of our Newton’s Law replacement for logarithmic time is:

m∗(~r × ~Ω∗ × ~Ω∗ × ~r) = ~r × ~F (22)

For a simple gravitational system of two identical masses with rotation at
distance r perpendicular to the plane of rotation this reduces to just:

2m∗r2|Ω∗|2 = r
G∗m∗2

(2r)2
(23)

or

r3|Ω∗|2 =
1

16
G∗m∗ (24)

Since the logarithmic period of an orbit is just 2π/|Ω∗|, this is just Kepler’s
third law, but for time defined logarithmically.

We can see the important consequences of logarithmic versus linear time
if we transform this equation back to linear time quantities. First we note
|Ω∗| = dθ/d ln t/to = t d|Ω|/dt while m∗ = m/t2. But since we have measured G
at the present time, tp, we must substitute using tp instead of t; i.e., G∗ = G t−4

p .
It follows immediately that the proper linear time equivalent of our log-time law
is:

r3|Ω∗|2 =
1

16
Gm

[

tp
t

]4

(25)

This equation (or more general versions of it) are commonly used by as-
tronomers to determine mass of celestial objects when they are in rotation. If
time is logarithmic, then the mass they estimate should in reality be given by:

m∗ =
16r3|Ω∗|2

G∗
. (26)

Or in linear time quantities using G determined at tp:

m =
16r3|Ω|2

G

[

t

tp

]4

(27)
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where G is the previously thought to be ‘universal constant’. Clearly any esti-
mate of mass at times in the distant past using gravity and rotation-rate alone
will substantially over-estimate the amount present by the time ratio to the
fourth power.

Astronomers also estimate mass another way – by measuring luminosity and
comparing the result to the luminosity and the mass of the sun. [8]. But the
mass of the sun has itself been estimated using the rotation of the earth and
other planets about it. [6, 8]. So in effect one of the t2’s in the substitution
should be replaced by t2p. So in this case this method of mass estimation is only
off by a factor of (t/tp)

2.
Both of these provide a possible explanation for the missing matter in galax-

ies, since all estimates use some form of the linear time rotational forms of
Newton’s equations. And it also provides an explanation as to why the vari-
ous estimates do not agree. In fact, if time is logarithmic, both are wrong and
both over-estimate the actual mass present. A correct application of these log-
time equations could quantitatively account for the differences in the various
means of estimation. And elimnate the need for the missing ‘dark matter’ as
well. If there is less mass, there is less gravitational attraction, so less ‘dark
energy’ would be needed to keep the system from collapsing or to maintain the
expansion rate.

9 Energy and the virial theorem

It should be clear from the above that in a system where time is logarithmic,
we must be willing to reconsider the basic ideas of what is invariant and what
is not. Of particular importance for cosmology is the Hamiltonian defined as
H = Σpiri where pi is the momentum of the i-th member of the collection of
masses, ri is its position, and the summation is over all i.? For simplicity here,
we use only the scalar form of the equations.

Following the proof outline of Thayer Watkins in notes at San Jose Univer-
sity [9], we define

H∗ = ΣP ∗

i ri (28)

where as before the subscript i denotes the i-th member of the system, m∗

i is
its cosmic mass, ri is its position relative to it’s center of mass, P ∗

i = m∗

i V
∗

i is
the newly defined momentum and V ∗

i = dri/dτ . For now we only consider the
forms when the coordinate system is not expanding.

First take the logarithmic derivative to obtain:

dH∗

dτ
= Σri

dP ∗

i

dτ
+ΣP ∗

i

dri
dτ

(29)

But Fi = dP ∗

i /dτ . So

dH∗

dτ
= ΣriFi +ΣP ∗

i

dri
dτ

(30)
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And since P ∗

i = m∗

i (dri/dτ) the last term reduces to

ΣP ∗

i (dri/dτ) = Σm∗

i (dri/dτ)
2 = Σm∗

i V
2

i (31)

This is just twice the kinetic energy of the system , say 2K; so,

dH∗

dτ
= ΣFiri + 2K (32)

(Interestingly, as noted above, since m ≈ m∗t2, K is the kinetic energy in both
logarithmic and linear time variables).

Second we assume the forces acting to be conservative so Fi = −dΦ/dri
where Φ is the gravitational potential field. Substituting yields:

dH∗

dτ
= −Σri

dΦ

dri
+ 2K (33)

If the system is cyclical, like two galaxies in rotation, then averaging over a
period (in τ) yields 〈dH/dτ〉 = 0. So the average kinetic energy is just half the
potential energy; i.e.,

〈K〉 =
1

2
〈Σri

dΦ

dri
〉 (34)

This looks exactly like the result for linear time. Only the gravitational potential
is different – both because of the definition of mass and G∗.

Third we need to compute the average potential energy of n galaxies. The
average gravitational potential energy for two identical galaxies separated by
distance R is G∗m∗2/R. If there are n galaxies, there are n(n − 1)/2 pairs of
galaxies. So the average kinetic energy of n identical galaxies is nm∗〈V ∗2〉/2.
And this must be equal to half the average potential energy, so:

n
1

2
m∗〈V ∗2〉 =

1

2
(n)(n− 1)

1

2

[

G∗
m∗2

R

]

(35)

Finally, solving for m∗ yields:

m∗ =
2〈V ∗2〉R

G∗(n− 1)
(36)

Thus the total mass of the n-galaxies in the cluster is:

nm∗ =

[

2n

n− 1

]

〈V ∗2〉R

G∗
(37)

At first glance this appears to be the previous result for linear time. But it is
not, since the definition of mass, m∗, velocity, V , and gravitational constant,
G∗, are different.

We can put this result in terms of our previous definitions using m∗ = mt−2,
V ∗ = tv and G∗ = Gt4p. The result is:
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nmt−2 =

[

2n

n− 1

]

t2v2R

Gt4p
(38)

or

m =

[

2

n− 1

] [

v2R

G

] [

t

tp

]4

(39)

So if time is logarithmic, then the mass at time t will be over-estimated by a
factor of (tp/t)

4 using the linear time analysis. This is exactly what have might
been guessed from the preceding section.

10 Maxwell’s equations

All of astronomy depends on the propagation of radiation of some form. And
radiation is governed by Maxwell’s equations. So it makes sense to re-write
them as well in log-time variables and examine the consequences.

Maxwell’s equations (in Gaussian units) are given by [11]:

∇ · ~E = 0 (40)

∇ · ~B = 0 (41)

∇× ~B = −
1

c

∂ ~E

∂t
(42)

∇× ~E =
1

c

∂ ~B

∂t
(43)

But (1/c)∂/∂t is exactly (1/c∗)∂/∂τ = (1/c∗)∂/∂ ln t/to since c∗ = t c. So
Maxwell’s equations in log-time variables are exactly the same in either set of
time variables; i.e.,

∇ · ~E = 0 (44)

∇ · ~B = 0 (45)

∇× ~B = −
1

c∗
∂ ~E

∂τ

(

= −
1

c∗
∂ ~E

∂ ln t/to

)

(46)

∇× ~E =
1

c∗
∂ ~B

∂τ

(

=
1

c∗
∂ ~B

∂ ln t/to

)

(47)

There is, however, one important difference when one considers the wave
equation forms which can be derived by defining a vector magnetic potential,
~B = ∇× ~A, and a scalar potential for the electric field, ~E = ∇φ. The resulting
equations are:
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∇2 ~A =
1

c∗2
∂2 ~A

∂τ2
(48)

∇2φ =
1

c∗2
∂2φ

∂τ2
(49)

In linear variables these become;

∇2 ~A =
1

c2

{

∂2 ~A

∂t2
+

1

t

∂ ~A

∂t

}

(50)

∇2φ =
1

c2

{

∂2φ

∂t2
+

1

t

∂φ

∂t

}

(51)

where we have substituted the linear (and presumably time-dependent) phase
speed, c, for the logarithmic one, c∗, using c∗ = c t. Like the corresponding
term in the reformulation of Newton’s Law (equation 13), these extra terms,

td ~A/dt and tdφ/dt, might actually be useful for verifying the logarithmic time
idea (or invalidating it) experimentally by looking for anomalous attenuation
of very high frequency radiation. They surely would seem to present an ideal
opportunity for perturbation analysis.

11 Special relativity

We have seen in the preceding section that Maxwell’s equations have an identical
form in both linear time and log time variables. So aside from the fact that most
of the relativistic equations of physics need to be rewritten in terms of cosmic
time derivatives, nothing appears to change very much. But we have to be
careful to make sure we distinguish between absolute time and time differences.

One reason for this is that the Minkowski metric is unchanged by the trans-
formation to log-time. This is easy to see from the fact that c∗ = t c and
dτ = d ln t/to = dt/t. So

dx2 + dy2 + dz2 − c2dt2 = dx2 + dy2 + dz2 − c∗2dτ2 (52)

The same is true for the Lorentz transformation since v2/c2 = V ∗2/c∗2. The
only difference is that c∗ is presumed constant instead of c. And Einstein’s law
of physics that the speed of light is constant is similarly modified so that it is
c∗ that is constant.

Finally we note that the important relativistic relationships (see Feynman
vol I, Chap 16[4]),

E2 − P 2c2 = moc
2 (53)

Pc = Ev/c (54)
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are also preserved in log-time coordinates. I.e.

E∗2 − P ∗2c∗2 = m∗

oc
∗2 (55)

P ∗c∗ = E∗V ∗/c∗ (56)

Note that there may still be some question about how these apply to the
stretched coordinates considered below. In particular, is it reasonable to apply
to this very special coordinate system the hypothesis that laws of nature should
be independent of coordinate system?

12 Propagation of radiation at constant phase

Let’s consider what happens if an oscillator radiates into space with logarithmic
time, τ = ln(t− tosc)/to instead of the usual linear time. Its location is at fixed
~xosc and it begins at time tosc. The phase at any time and location would be
given by:

φ = ~κ · (~x− ~xosc)− ω∗(τ − τosc). (57)

~k = ∇~xφ is the wavenumber and ω∗ = −dφ/dτ are the wavenumber vector and
frequency in our logarithmic time space.

The important question for us on earth is: what do we see in our linear time,
linear space coordinates? Or more to the point: can logarithmic time account
for the ‘Red Shift’? Interpretations of the Red Shift form the basis for much of
modern cosmology.

The wavenumber vector is of course the same since we have assumed space
fixed. But the ‘frequency’ and ‘phase velocity’ are given respectively as ω =
−dφ/dt, and c = ω/|~k|. It follows immediately that the frequency we see is
given by:

ω =
dφ

dt
=

ω∗

t
(58)

At first glance, Equation 58 appears to imply a red-shift, since the farther away
and earlier it began, the greater the frequency shift. In fact it seems to imply

a red-shift even if there no expansion at all. But things are not what they
first appear, because the speed of light is time-dependent as well.1 The phase
velocity seen in our earthly linear-time system would be:

c =
ω∗

k∗

[

1

t

]

= c∗/t (59)

Or c∗ = c t. If ω∗/k∗ = c∗ = constant then c measured by us would be time
dependent. Note that expanding 1/t about any time interval in today’s epoch
means any discrepancies noted would be of order δt/tp, and as noted above well
below our ability to measure it. It should also be noted that since we now define
the standard meter to be exactly the distance traveled by the speed of light in

1This point was missed in earlier versions of this work [5], but is corrected herein.
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a given time, then that definition makes it impossible to see any effect at all.
Clearly the log-time hypothesis if verified will require some changes to even our
standards for measurement.

So the wavenumber of radiation (in propagation through fixed space) remains
constant. Thus any observed wavenumber shift must come from other sources;
e.g., source moving away or space itself expanding. The first possibility is like
all previous analyses of linear time, so is not of interest here. The possibility
that space itself is expanding is considered below.

13 Accounting for an expanding universe

The computation of velocities and accelerations above do not account for any
effects that might arise if the coordinate system we need to describe space might
be expanding. Or that the universe itself might be expanding. Either way, we
can examine this possibility by defining a scale length, say δ(t), that is time-
dependent. Note that we have used t instead of τ , but either is acceptable.
Also, special relativity could be included as well.

Now it makes sense to define our physical laws using both logarithmic time
and our expanding coordinate system. So we define a position within it to be
given by ~η = ~x/δ(t) and a displacement field to be defined by ~ηp = ~xp(~η, τ)/δ(t).

The logarithmic velocity in this field would be given by:

~Vp

∗

=
d~ηe
dτ

(60)

=

[

t

δ

]

∂~xp

∂t

∣

∣

∣

∣

t

− ~ηp

[

t

δ

dδ

dt

]

(61)

Or putting it in linear- time, linear-space variables, the velocity ~vp = ∂~xp/∂t|t
would be given by:

~vp =

[

δ

t

]

~Vp

∗

+

[

dδ

dt

]

~η (62)

The farther away in η-space we view things, the faster they will appear to be
moving, even if there is no relative velocity at the same place (i.e., ~V ∗

p = 0).
In fact, it does not matter where we put the origin for η, the result will be the

same everywhere. Locally (i.e., near η = 0), the two velocities, ~vp and ~Vp

∗

are
simply proportional to each other by the factor δ/t. Obviously the special case
for δ ∝ t is of great interest.

Now the acceleration in our four-dimensional expanding system can be sim-
ilarly computed by defining it to be:

~Ap

∗

=
d ~Vp

∗

dτ
(63)

=

[

t2

δ

]

d2~xp

dt2
+

[

t

δ

]

d ~xp

dt
−

[

t2

δ2
d2δ

dt2

]

d ~xp

dt
− ηp

[

d2 ln δ

d(ln t/to)2

]

+ ηp

[

d ln δ

d ln t/to

]2
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The first two terms correspond to the terms we saw above for a fixed coordinate
system, while the last two are a result of the expanding coordinates. As for the
velocity, the acceleration due to coordinate expansion are negligible near η = 0
but increase with distance from the origin. The middle term is zero if δ ∝ t. All
of the last three terms are zero if δ = constant (i.e., no expansion of coordinate
system), and the result is to within the factor δ the same as equation 10.

Let’s consider what happens if an oscillator operates in expanding space,
~η = (~x− ~xosc)/δ(t), and with logarithmic time, τ = ln(t− tosc)/to. Its location
is at fixed ~ηosc and it begins at time tosc. The phase at any time and location
would be given by:

φ = ~κ∗ · (~η − ~ηosc)− ω∗(τ − τosc). (64)

~k∗ = ∇~ηφ and ω∗ = −dφ/dτ are the dimensionless wavenumber vector and
frequency in our spatially scaled and logarithmic time space.

The important question for us on earth is: what do we see in our linear time,
linear space coordinates? The answer can again be found from our earthly defini-
tions of ‘frequency’, ‘wavenumber’ and ‘phase velocity’ which given respectively
as the ω = −dφ/dt, ~k = ∇~xφ, and c = ω/|~k|.

It follows immediately that:

ω =
dφ

dt
=

ω∗

t
− ~k∗ · [~η − ~ηosc]

[

1

δ

dδ

dt

]

(65)

~k = ∇~xφ =
~k∗

δ(t)
(66)

Equation 66 clearly implies a wavenumber red-shift for all non-negative expan-
sion rates. And for frequency, equation 65 implies that the farther away, the
greater the shift.

The phase velocity seen in our earthy system would be:

c =
ω∗

k∗

[

δ(t)

t

]

− |~η − ~ηosc|

[

dδ

dt

]

(67)

If dδ/dt = 0, the speed of light we see would be proportional to just the inverse
age of the universe in linear time, our previous result for fixed spatial coordi-
nates. Our proposed new physical law that c∗ = ω∗/k∗ = constant demands
that (as before) c measured by us be both time and space dependent.

The linear expansion rate case is of particular interest since δ = [dδ/dt]t, so
equation 59 reduces to:

c =

[

dδ

dt

]

{c∗ − |~η − ~ηosc|} (68)

If we measure only at η = 0, at least directly, c and c∗ are directly proportional
to each other. Only by looking far away could we see differences.
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14 Summary and conclusions

In view of the above it is clear that we could have equally written Newton’s law
using logarithmic time without ever being able to tell the difference, at least as
long as we only applied it to times within our human experience. Any differences
would have shown up only for very large times – on the order of billions of years.

The most important difference for mechanics is that the definitions of mass
and velocity change. In particular our traditional definition of mass becomes
dependent on absolute time squared. This has important implications for the
gravitational law and our applications of it. In particular what we might have
previously believed to be the gravitational constant in fact varies as the fourth
power of absolute time. Not recognizing this can lead to gross over-estimates of
celestial masses, and incorrect inferences that mass is missing.

It is further suggested if time is indeed logarithmic, then the remaining laws
of physics must be treated the same way. Maxwell’s equations in particular have
exactly the same form when expressed in logarithmic time. And the same is true
for the important relativistic energy equations and the Minkowski invariant.

Finally, two different scenarios have been considered, the first where space is
not expanding, and a second where it is. The first shows no redshift unless the
source is moving away from the observer. The second with a constant expansion
rate leads to a wavenumber redshift which depends on the expansion rate, and a
frequency shift which is linear in distance from the observer. Both are consistent
with a constant logarithmic speed of light.

Assuming there is nothing obviously wrong with the analyses presented
above, the possibility of that time might be logarithmic should be a boon for
cosmologists and astronomers. It is for the former to flesh out the mathematical
consequences on other aspects of our knowledge. And the latter alone have the
data and wherewithal to test whether it describes their data. The late great
solid mechanics experimentalist, James C. Bell (of the Johns Hopkins Univer-
sity), often remarked “Experimentalists test and sort theories.” At very least
the experimental astrophysics community has another theory to add to the mix.
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