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Catastrophic Equatorial Icing Proof

45. Catastrophic Equatorial Icing events Crash Aircraft with Increasing Fr
Trieste, Italy, updated June 5, 2016, following comments of Referees. pp 13787
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Figure 1. Catastropluc Equatonal Icmng (CEI) events are shown by red stars. The cause
15 a rare combnanon of Equatonal hot water evaporanon and mtermuttent surface winds
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Proof of fluid mechanical cosmology

Hot big bang turbulent Dilbert, LA Times, April 27, 2016
combustion under Planck

conditions: 10*? K, 107%° m, Fish are just

10% s creates universe in diatoms
time of 10?7 s, mass 10" kg. plus time
in salt water
\ oceans of
dark matter
Plasma epoch fromt>10""s planets
when mass exceeds energy, seeded with
until t ~ 10 s, when proto- life by
galaxies fragment along vortex cometary
lines of the second turbulence: panspermia.

mass 10% kg, size 10°° m, HGD Cosmology Precursor

10°Kto 10*K.
\ Gas epoch begins fromt > 10"
when dark matter planets
MNo stars, plane(g or Dilbert formin PGC clumps ofa trillion,
cartoons are possible from until today with t ~ 10"s. Cartoons
like Dilbert likely began soon after
the beginning of the biological big
bang at 2 My, or 10'*s, when T
decreased to ~ 300 K, comfortable
journalofcosmology.com o humans living on the ~ 10% big bang

June 1 dark matter planets that were most lucky.

ACDMHC cosmology until
t >10'®s. Try HGD.
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Optical and Radar Remote Sensing of Waves and Turbulence ﬂ%\_\

Ty
Numerical simulation of stratified turbulence radiating Synthetlc Aperture Radar Image of Eddies mm"h\
)

near vertical internal waves in a narrow frequency band )
Phys. Fluids, Vol. 15, No. 2, February 2003 )

determined by the Ozmidov scale at fossilization LR,
K. Dohan and B. R. Sutherland’ <
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[LL.inden-Sutherland Waves

A Linden, P. F. 1975, The deepening of
a mixed layer in a stratified fluid, J.
Fluid Mech. 71, 385-405

A Sutherland, B. R. and Linden, P. F.
1998. Internal wave excitation from

stratified flow over a thin barrier, J.
Fluid Mech. 377, 223-252

A Sutherland, B. R. 2001, Finite-
amplitude internal wavepacket
dispersion and breaking, J. Fluid
Mech. 429, 343-380

A Dohan, K. and Sutherland, B. R.
2003, Internal waves generated

from a turbulent mixed region,
Physics of Fluids 15, 488-498
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Intermittent narrow-frequency-band soliton &t
wave packets were radiated by tides interacting
with continental shelf features. Remote sensing

was used to direct Vadim Paka and the

Akademik loffe to get sea truth.
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Internal waves and sea surface smoothing
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J. PHYS. OCEANOGR. MOUM, FARMER, SMYTH, ARMI & VAGLE

Structure and Generation of Turbulence
at Interfaces Strained by Internal Solitary Waves
Propagating Shoreward over the Continental Shelf

J.N. Moum!, D.M. Farmer® , W.D. Smythl, L. Armi°, S. V.agle4

1College of Oceanic and Atmospheric Sciences, Oregon State University
Graduate School of Oceanography, University of Rhode Island
3Scripps Institution of Oceanography
nstitute of Ocean Sciences, Sidney, B.C.

revised J. PHYS. OCEANOGR.

February 27, 2003
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Beamed Zombie Turbulence
Maser Action Mixing Chimneys

A BZTMA internal wave beaming by outfall

fossil patches to sea surface is closely

analogous to astrophysical maser beams

A Bottom topography intermittently produces

A

fossil-turbulence internal waves at 30-250

m scales determined by (Lpg) g,

RASP-ISINTECH detection of turbulence
results from outfall zombie turbulence
waves vertically beaming (Ly,) gg; patterns

at (LRO)Outfall scales < (LRO)Ambiem‘

Mechanism is non-linear, intermittent in
space, intermittent in time, and involves

fossil and zombie turbulence processes

Microstructructure sea truth requires
horizontal and vertical profiling to detect
anomalies in mixing rates and patch
hydrodynamic phase diagrams

June 15, 2016
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A suloy is al rface is
covered by precipitous and irregular waves that form

The ISINTECH remote sensing of submerged fossil outfall turbulence
1s due to mini-Suloy surface smoothing according to the BZTMA model

‘ayment lying Eét\}veen Finland and tH!Sowet
pan they h@'know,n as "siomes.: Suloys
intense h ssing audﬂa‘ g al mile:

Guif of Oman
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What is turbulence? What is fossil turbulence?

Turbulence is defined as an eddy-like state
of fluid motion where the inertial-vortex
forces of the eddies are larger than any
other forces that tend to damp the eddies

v xw

Fossil turbulence is defined as a perturbation
in any hydrophysical field produced by
turbulence that persists after the fluid is no
longer turbulent at the scale of the

perturbation.
June 15, 2016 13




Oceanic Fossil Turbulence

Hydrodynamic Phase Diagrams show most oceanic
microstructure patches are partially fossilized
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MSSO09 (foreground) and MSS13 (background) MSS12 (catamaran) on HAPA

June 15, 2016 16



Catamaran Tow Body
i .;‘I,Tow‘ropes |
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Fossil temperature turbulence =
remnants persnst at sea surface :
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Surface
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Enhanced temperature mixing above trapping depth
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Aug. 13,2004 Slick NW of OutFall 1
8:30 am, HAPA, 5 knot wind

' No discoloration, no smell
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Figure 4. Vertical profiles of temperature T, salinity S, density o, turbidity, viscous
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dissipation rate €, temperature gradients, and Thorpe density displacement scales L
near the end of the diffuser, on 09/02/2002. The low salinity, high turbidity signature
of the trapped wastefield is seen at 42-50 meters depth. Microstructure patches with
density overturns A, B, C, D, E, F, and G were identified for analysis from the Thorpe
displacement profile on the right. The strong turbulence activity of F and G
(compared to ambient near surface turbulence patches) is taken as evidence of near
vertical radiation (45 degrees) of internal waves by fossil turbulence patches like D.




Hydrodynamic Phase Diagram for
outfall and ambient patches

10

non- turbulence active turbulence
Strong turbulence near the sea
Ambient near surface radiated from submerged
surface turbulence wastefield
H
g B Reo/Ref Reo/Rer
1 o 7 F_7 7
- o2 o i,
e A . :
o & ‘:,’c Dillon coggefdtion_
) S .
" ‘(‘S\ﬁ/ C R
: ‘ ’::‘ (\\, ’b/ ‘/
({0\3 * - @ + 0.1 meters
N/ "D :|: .+05XLTmax
01— / e‘) ‘
. QO * D
»C 7
NS
O\)"‘/
i
“,
”
fossil turpulence : : acti\lle-fossil turbulence
0.01 0.1 . 10 100 1000 10000 100000 1000000
Re _| €
Re, i &

June 15, 2016




June 15, 2016

lkonos-2
Sept. 13,2003

Bl Very strong

= Strong

Bl Medium
Weak




September 13th, 2003
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September 14th, 2003
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BZTMA mechanism
IKONOS, at 681 km *

Sea surface brightness anomalies

Island

Beamed Zombie Turbulence Maser Action

) fossil turbulence waves

Drogue bottom boundary layer

s ~l patterns of near surface turbulence

Zombie turbulence — el | reflect boundary layer wavelengths

kilowatts pumping

ISINTECH -
Internal Waves BZTMA

mixing chimneys i

bottom boundary layer
L~

-

current
‘ .
1 fossil turbulence waves

BZTMA: gigawatts of fossil turb'ulence waves from the bottom turbulent
boundary layer interact with fossil density turbulence patches advected
from the wastewater outfall to radiate zombie turbulence waves in the narrow
frequency band internal wave patterns detected from space satellite images.
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Zombie turbulence formation from fossil turbulence

fossil waves
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Require more samples of microstructure
at outfall since HPD plots show undersampling
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Drogues Tldes and Ramfall
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September 14,2003
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BZTMA chimneys of estuarine mixing, triggered by fossils
of Sand Island outfall turbulence advected by alongshore
tidal motions and strong offshore flows from Sept. 10 rains

Sept. 11,2003 RADARSAT radar image

BZTMA waves from fossils of Sand Island outfall turbulence rise

in mixing chimneys and break at the surface in patterns that reveal
the narrow band wavelengths of the internal waves that power the
June 15. 2016 Z2°embie turbulence patches. The mechanism fails in the mixed regions.

Sept, 13,2003 ENVISAT radar image




Brazil Basin Topographic Turbulence
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Arithmetic mean € values
require many samples

Large

[0}

102

Intermittency increases at low latitudes _|

A undersampling errors
increase with intermittency

undersampling ;h-» OZCOrfG Baker and Gibson (1987)

error
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Vertical information transport and mixing are highly nonlinear
in the BZTMA model, leading to intermittent mixing chimne%\_\

— w2 7

BZTMA mixing chimneys at séa surface'
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Power estimates T S\

A Diffuser hydraulic power g dp h V = 10ms~
- x23kgm3 x70m x3m3s! = 50,000 W =50 kw

A Cuossdln o vdvmnaic nmnivnae — Sa AT/ —1N-5...24-3 TN3 T~
Energetics of the beamed zombie turbulence maser action
mechanism for the remote detection of submerged oceanic turbulence,
Gibson Bondur Keeler 2005

kg m30.5 (0.5ms)’ 10°m? =5 10° W~ 5 gw

A Bottom (rough) power radiated vertically as fossil
 turbulence waves ~ 2.5 gw; Linden JFM 1975

................................ *COmpletelyr()ughbOttOm...OtherWiseil’lt@l'ﬁlittent .................................................
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[Linear internal wave models

A Maximum power for internal waves is 50 kw but 10 mw
is required.

A Linear waves alone have little effect on surface
motions. They require fossil-zombie turbulence waves
to produce surface smoothing and fossil turbulence-
surface wave interaction to preserve the patterns.

A Linear waves do not have the narrow frequency bands
observed by ISINTECH.

A Linear waves are uniform in space and time, not
intermittent as observed.
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Conclusions TN

A Remote submerged turbulence detection is permitted by fossil-
zombie turbulence internal waves (large amplitude LS waves) that
are dual-band non-linear, vertically propagating, and intermittent.

A Persistent outfall fossils (ages >300 N) extract and re-radiate
zombie power and patterns from soliton wave packets in BZTMA
mixing chimneys to the surface.

A Patterns are preserved by near-surface fossil turbulence. These
smooth the surface.

A RASP 2005 should focus on testing BZTMA mixing processes using
drogue tracking of effluent and adequate, coordinated, vertical and
horizontal MSS profiling near the outfall.

A HPD patch values for RASP 2002-2005 are critical, and should be
computed and cataloged.
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