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Abstract

For diagonal metrics, the Einstein Real Gravity (RG) formulation of
General Relativity (GR) has been developed by making use of an expo-
nential parametrization of the metric tensor in terms of physical tensor
potentials. But the metric is not an experimentally observable quantity
and so this parametrization has yet to be physically justified, although,
starting with Einstein’s 1907 early treatment, there exist strong argu-
ments in its favor. To address the issue, we RE-DEFINE the physical
tensor potentials in terms of first order derivatives of the metric tensor,
which are linearly related to the observable gravitational force field and
the Christoffel symbols. Identifying the 00-component of the re-defined
tensor potentials with Newton’s gravitational potential, we show EXACT
OBEDIANCE with (1) Newton’s second law of motion from the geodesic
equation for a point particle as well as with the (2) relativistic hydro-
static equilibrium relation for a perfect fluid from the Freud-Euler equa-
tion. These provide convincing physical justification for the Real Gravity
formulation of General Relativity. Real gravitational and inertial forces
are still linearly separated in the Christoffel symbols and the new defini-
tion coincides with the exponential parametrization for diagonal metrics.
Non-diagonal stationary spacetimes or spacetimes allowing gravitational
waves can now be treated consistently. Event horizons cannot develop in
this theory.
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1 The Structure of General Relativity

The general theory of relativity describes the laws of nature as seen from general
reference frames, whether galilean or not. The equivalence principle assures us
that the general motion of particles or material bodies under (loosely called)
gravitational forces are equivalently described by observers in non inertial ref-
erence frames.

However, these loosely called gravitational forces covered by the equivalence
principle are known not to be restricted to real (pure or actual) gravity. The
equivalence principle in fact unifies the real gravitational force with other forces
known as inertial forces such as the centrifugal and Coriolis forces of classi-
cal mechanics. All of these forces are traditionnally described as part of the
gravitational force by general relativists.

Decades ago, attempts at describing a unified theory of gravitational and
inertial forces has been presented by Rosen in the form of a bi-metric theory of
gravity [1, 2, 3]. But the existence of two metrics in this theory is somewhat
problematic.

In parallel, Yilmaz attempted to develop a theory dealing with strong grav-
itational fields. Based on 1907 arguments by Einstein [4], Yilmaz further de-
veloped these ideas by formulating an exponential parametrization for diagonal
metrics, derived from a defining relationship between the Christoffel symbols
and first-order derivatives of his so-called tensor potentials [5, 6, 7]. His theory
also added an energy-momentum tensor for the gravitational field itself in the
source term of Einstein’s equations. Such an addition however implied that
gravity is a self-generating force and that the vacuum of the theory can be a
curved spacetime. This does not seem to agree with basic observations.

However, pending a linear constraint between Einstein and Yilmaz energy-
momentum tensors [8, 9, 10, 11], Yilmaz theory can be shown to be completely
equivalent to Einstein theory, if the latter is parametrized as well in terms of
tensor potentials. This equivalence solved the so-called zero-pressure problem
of the Yilmaz theory brought up by Misner [12, 13, 14, 15] for stars interior, and
made the constrained Yilmaz theory free of self-generating gravitational forces,
a welcome improvement.

Our strategy has then been to focus on the development of the original Ein-
stein theory of General Relativity (GR), assumed to be also valid in the domain
of strong gravitational forces. This necessarily required shifting the physical
gravitational field from the metric tensor to the tensor potentials. So one has
to define such physical gravitational potentials in a way that reproduces exactly
Newton’s laws and which simultaneously allows for the separation of the loosely
defined gravitational force into so-called real (pure or actual) gravitational and
inertial forces.

The real gravitational force is very different from the other inertial forces.
Unlike the latters, the real gravitational force vanishes at infinity [16]. Further-
more, unlike the others, it cannot be removed globally by a change of reference
frame. This property announces the tensorial nature of the real gravitational
force. The other inertial forces on the other hand do disappear when going to a
galilean reference frame (cartesian or natural coordinates [17]). For this reason,
inertial forces are non-tensorial. We therefore expect the sum of both types of
forces to be described by a pseudo-tensor, the Christoffel symbols.

The physical reason why the real gravitational force cannot be made to
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disappear is because it curves spacetime [16, 17, 18, 19], due to the presence of
material sources carrying mass or energy. The other forces do not since they
appear because of our choice of reference frame and coordinate system, although
they remain unified with the real gravitational force through general relativity
and the equivalence principle.

We thus see that the equivalence principle is a very wide principle which
englobes inertial forces beyond the real spacetime curving gravitational force
originating from matter energy-momentum. The description of real gravity is
then cluttered by these frame-dependent forces which complicates the dynamics
(and mathematics).

It is then reasonable to split general relativity into two parts, a part covering
the flat spacetime inertial forces which should be incorporated into a general-
ization of special relativity, and another one dealing exclusively with curved
spacetime phenomena, i .e. the real gravitational force.

As we now demonstrate, such a linear separation of forces is already struc-
turally present in Einstein General Relativity, and so Rosen bi-metric theory
[1, 2, 3] is not required.

The real gravitational force

Let us proceed by first making use of the following three fundamental relation-
ships of Einstein General Relativity [16, 17, 18, 19],

(1) Einstein curvature field equation:

G k
j = R k

j −
1

2
δ kj R =

8πk

c4
τ

(E)k
j

R k
j =

8πk

c4

(
τ

(E)k
j − 1

2
δ ji τ

(E)
)
, (1.1)

(2) Transformation law of the metric tensor:

ds2 = − gij dxidxj

gij = g′ab
∂x′

a

∂xi
∂x′

b

∂xj
, (1.2)

(3) Transformation law of the Christoffel symbols pseudo-tensor:

Γikl = Γ′
s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
+

∂xi

∂x′s
∂2x′

s

∂xk∂xl
. (1.3)

Much information is contained in the above three relationships. But to un-
cover their true contents, we must rely on the physical (observable) nature of
the gravitational force they aspire to describe.

A point particle’s motion in a general gravitational field is described by the
geodesic equation,

dui

ds
= −Γiklu

kul , (1.4)
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with 4-velocity ui = dxi/ds (uiu
i = −1), 4-acceleration dui/ds = d2xi/ds2 and

4-force −mΓiklu
kul, with m the particle’s mass.

As mentioned earlier, two types of forces act on this single particle, i.e. the
inertial or coordinate-dependent force and the real gravitational force originating
from a nearby matter source. Both forces are included in the Christoffel symbols
Γikl pseudo-tensor.

It is important to understand that the pseudo-tensor nature of the combined
forces originates from its coordinate-dependent part. Without it, Γikl should be
describing a tensor force.

We therefore take a closer look at the transformation law (1.3) for the
Christoffel symbols. Let us consider the case where x′

a
describes a galilean

frame of reference and so belongs to a system of cartesian coordinates, while xi

belongs to a general system of curvilinear coordinates and so describes a general
non-inertial frame of reference.

Obviously, the second term in the rhs of eq. (1.3) is the non-tensor (coordinate-
dependent) part responsible for the pseudo-tensor nature of Γikl. Such a term
actually vanishes when xi is chosen to describe a galilean reference frame.

Thus let us assume the following linear separation of the inertial and real
gravitational forces in the Christoffel symbols [8, 9, 10, 11, 12, 13, 14, 15],

Γikl = Sikl + ∆i
kl , (1.5)

in which the Sikl are called the Inertial (Coordinates) symbols and the ∆i
kl the

(real) Gravitational symbols. Now in cartesian coordinates, there are no inertial
forces acting on the single particle. Therefore we have,

S′
i
kl = 0

Γ′
i
kl = ∆′

i
kl . (1.6)

Inserting the decomposition (1.5) and the galilean values (1.6) into the trans-
formation law (1.3) yields,

∆i
kl + Sikl = ∆′

s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
+

∂xi

∂x′s
∂2x′

s

∂xk∂xl
. (1.7)

Since Sikl must describe the coordinate-dependent force, we find immedi-
ately,

Sikl =
∂xi

∂x′s
∂2x′

s

∂xk∂xl

= gim g′rs
∂x′

r

∂xm
∂2x′

s

∂xk∂xl
, (1.8)

where the second row originates from the transformation law (1.2) of the metric
tensor. We therefore have,

∆i
kl = ∆′

s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
, (1.9)

which shows that the Gravitational symbols ∆i
kl form a true tensor and so

describe the real gravitational force.
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The above tensor property remains valid for any curvilinear coordinate sys-
tems. That the real gravitational force is a true tensor force is absolutely nec-
essary to allow for the existence of propagating gravitational waves carrying
energy across spacetime as this requires localizability of real gravitational en-
ergy. This is the answer to the old energy localizability problem studied over a
century ago by Schrodinger [20], Bauer [21] as well as Einstein himself [22].

Note that when x′
a

describes an arbitrary curvilinear coordinate system, the
transformation law of the Inertial symbols becomes, quite generally,

Sikl = S′
s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
+

∂xi

∂x′s
∂2x′

s

∂xk∂xl
, (1.10)

which of course reduces to eq. (1.8) for x′
a

galilean (S′
s
rp = 0).

Now returning to the geodesic equation (1.4), we notice that the 4-acceleration
dui/ds, unlike the 4-velocity ui, is not a vector. Recalling however the separa-
tion (1.5), we define [8, 9, 11] the following generalized 4-acceleration ai,

ai =
Dui

ds
≡ dui

ds
+ Siklu

kul = −∆i
klu

kul . (1.11)

Because ∆i
klu

kul and ui are tensors, the above generalized 4-acceleration is a
vector under general coordinate transformations. It is related to the so-called
proper 4-acceleration αi as follows,

αi = ai + ∆i
klu

kul , (1.12)

where,

αi =
dui

ds
+ Γiklu

kul . (1.13)

A geodesic is a particle trajectory with zero proper acceleration (αi = 0) and the
generalized 4-acceleration ai is the contravariant acceleration vector experienced
by material particles under the influence of the real gravitational force described
by the tensorial Gravitational symbols ∆i

kl and generated by other matter or
radiation sources.

When other forces such as the electromagnetic force are present, the tensor
equation (1.11) is modified as follows,

ai = −∆i
klu

kul +
e

mc2
F iku

k . (1.14)

In the absence of matter sources, the real gravitational force vanishes and so
∆i

kl = 0. Eq. (1.14) then describes the tensor equation of motion of a particle
in flat spacetime, but in curvilinear coordinates, and so not from the viewpoint
of a galilean reference frame,

ai =
Dui

ds
=
dui

ds
+ Siklu

kul =
e

mc2
F iku

k . (1.15)

Even though spacetime is flat, inertial forces still occur when making use
of curvilinear coordinates, i.e. from a non-inertial reference frame. Eq. (1.15)
therefore represents a generalization of Special Relativity (SR) to non-inertial
frames in the absence of real gravity, thanks to the principle of equivalence
which is still at work even in flat spacetime.

15424



Journal of Cosmology, Vol. 26, No. 28, pp 15420 - 15438

Finally, the separation of the Christoffel symbols as a sum of Coordinates
(Inertial) and Gravitational symbols in turns enables us to likewise separate the
Riemann curvature tensor Riklm as follows [8, 9, 11],

Riklm ≡ Riklm[∂Γ̂, Γ̂×Γ̂] = Riklm[∂Ŝ, Ŝ×Ŝ] +Riklm[D∆̂, ∆̂×∆̂] , (1.16)

in which we defined,

Riklm[∂Γ̂, Γ̂×Γ̂] ≡ ∂lΓ
i
km − ∂mΓikl + ΓinlΓ

n
km − ΓinmΓnkl , (1.17)

Riklm[∂Ŝ, Ŝ×Ŝ] ≡ ∂lS
i
km − ∂mSikl + SinlS

n
km − SinmSnkl , (1.18)

and,

Riklm[D∆̂, ∆̂×∆̂] ≡ Dl∆i
km −Dm∆i

kl + ∆i
nl∆

n
km −∆i

nm∆n
kl

= Riklm[∂∆̂, ∆̂×∆̂] +Riklm[0, (Ŝ×∆̂)+(∆̂×Ŝ)] ,

(1.19)

where the ”covariant derivative” Dl (wrt Sikl) is defined as,

Dl∆i
km ≡ ∂l∆

i
km − Snkl∆i

nm − Snml∆i
kn + Sinl∆

n
km . (1.20)

Now we notice that Riklm[D∆̂, ∆̂×∆̂] is a tensor while Riklm[∂Ŝ, Ŝ× Ŝ] is

not. Since their sum Riklm[∂Γ̂, Γ̂×Γ̂] is itself the full Riemann curvature tensor,
we then must have,

Riklm[∂Ŝ, Ŝ×Ŝ] = 0 , (1.21)

and so we find,
Riklm = Riklm[D∆̂, ∆̂×∆̂] . (1.22)

This situation is analogous to bi-metric theories [1, 2, 3], although there is
only one metric in this problem. The Ricci tensor and scalar curvature are then
given as,

Rik = Rlilk[D∆̂, ∆̂×∆̂] = Rik[D∆̂, ∆̂×∆̂] , (1.23)

R = gikRik[D∆̂, ∆̂×∆̂] = R[D∆̂, ∆̂×∆̂] , (1.24)

leading to the following expression for the Einstein tensor,

Gik ≡ Rik −
1

2
gikR = Gik[D∆̂, ∆̂×∆̂] . (1.25)

2 Defining the Physical Tensor Potentials

In his Nuovo Cimento article [5], Yilmaz defined his tensor potentials φ
(Y)k
j

decribing the relativistic gravitational tensor field from its linear relationship
with the Christoffel symbols in the following manner,

∂lφ
(Y)n
m = − 1

4
gnr ( Γrml + Γmrl ) +

1

4
δ nm Γssl , (2.1)
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or equivalently,

∂lφ̄
(Y)n
m = − 1

4
gnr ( Γrml + Γmrl )

φ̄(Y)n
m = φ(Y)n

m − 1

2
δ nmφ

(Y) , (2.2)

where φ(Y) ≡ φ
(Y)l
l is the trace of the Yilmaz tensor potentials. For diagonal

metrics, these definitions are equivalent to an exponential parametrization of
the metric tensor gij = {exp[−4φ̄(Y)]}ki ηkj [5, 6, 7, 23, 24, 25].

However such a definition is really arbitrary and, furthermore, when treating
interior problems beyond the so-called Newton gauge [15], the 00-component of
the Yilmaz tensor potentials is no longer solely identified with the newtonian
gravitational potential Φ. It is instead shifted as follows (in cartesian coordi-
nates) [15],

φ
(Y)0
0 − φ(Y)α

α = − Φ

c2
. (2.3)

Beyond the Newton gauge, an alternative definition has been given by the
author [15] which enables to lock the Newton gravitational potentiel on the
00-component of the new tensor potentials. It is given as follows (in cartesian
coordinates) [15],

φkj ≡ − 2 φ̄
(Y)k
j ; φ0

0 =
Φ

c2
, (2.4)

which is in simple relation with the definition (2.1) by Yilmaz. Although a
degree of arbitrariness is seemingly lifted by this new definition which locks the
newtonian potential to the 00-component, a more profound physical justification
remains to be given for it.

Fortunately, such a justification is readily found in the derivation of the
so-called Freud-Euler equation [15, 26, 27, 28] for a prefect relativistic fluid.

The Freud-Euler equation

Making use of the Bianchi identity as well as the rule for covariant derivatives of
symmetric tensors [16], we get the following relationship for the Einstein tensor
G k
j ,

DkG
k
j =

1√
−g

∂k(
√
−g G k

j )− 1

2
∂jgklG

kl = 0 . (2.5)

We then find,

∂k(
√
−g G k

j ) =
1

2
(gkm∂jgkl)

√
−g G l

m

=
1

2
(gkm∂jgkl)

√
−g R l

m , (2.6)

with the rescaled metric tensor defined as follows,

gij ≡
√
−ggij ; gij ≡

1√
−g

gij . (2.7)
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Now in general curvilinear coordinates, Einstein General Relativity is de-
scribed by the following set of relationships [8, 9, 10, 11, 12, 14, 15],

F k
j =

8πk

c4
(τ

(E)k
j + t̃

(E)k
j ) ; E k

j =
8πk

c4
t̃

(E)k
j

G k
j = F k

j − E k
j =

8πk

c4
τ

(E)k
j ; R k

j =
8πk

c4

(
τ

(E)k
j − 1

2
δ kj τ

(E)
)
, (2.8)

supplemented by the so-called Freud identity [3, 5, 15, 29],

∂k(
√
−gF k

j ) = 0 → ∂k[
√
−g(τ

(E)k
j + t̃

(E)k
j ) ] = 0 , (2.9)

with F k
j and E k

j the Freud and Einstein-Pauli pseudo-tensors respectively, as

well as the matter energy-momentum tensor τ
(E)k
j and the gravitational energy-

momentum pseudo-tensor t̃
(E)k
j .

Inserting the above relationships into the expression (2.6) for the Bianchi
identity, we arrive at the following general forms for the Freud-Euler equation,

∂k(
√
−g τ (E)k

j ) =
1

2
(gkm∂jgkl)

√
−g τ (E)l

m

=
1

2
(gkm∂jgkl)

√
−g
(
τ (E)l
m − 1

2
δ lmτ

(E)
)

= − ∂k(
√
−g t̃ (E)k

j ) . (2.10)

The Freud-Euler equation (2.10) is a universal matter dynamics equation in
general curvilinear coordinates, taking into account the effects of the real gravi-
tational and inertial forces present in the physical system, as well as the energy-
momentum conservation law (2.9). The form (2.10) is especially revealing as it
provides a natural defining physical relation for the tensor potentials φ kj in
arbitrary curvilinear coordinates. Such a defining physical relation is therefore
taken as follows,

∂jφ
m
l ≡ 1

2
gkm∂jgkl , (2.11)

yielding,

∂j φ̄
m
l =

1

2
gkm∂jgkl , (2.12)

where,

φ̄ ml ≡ φ ml −
1

2
δ ml ln

√
−g ; φ ≡ φ ll . (2.13)

Now since,
1

2
gkm∂jgkm = ∂j ln

√
−g = Γljl , (2.14)

we find,
φ = ln

√
−g →

√
−g = eφ = e−φ̄ . (2.15)

The Freud-Euler equation (2.10) is then re-written as [15],

∂k(
√
−g τ (E)k

j ) =
√
−g τ (E)l

m ∂jφ
m
l

=
√
−g
(
τ (E)l
m − 1

2
δ lmτ

(E)
)
∂j φ̄

m
l

= − ∂k(
√
−g t̃ (E)k

j ) . (2.16)
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It is a simple exercise to show that the defining physical relation (2.11)
coincides with the author’s previous definition (2.4).

Recalling eq. (2.2) for the Yilmaz potentials φ̄
(Y)n
m , the author’s old definition

(2.4) becomes,

∂lφ
n
m =

1

2
gnr ( Γrml + Γmrl ) . (2.17)

Making use of the well-known relation,

Γmkl =
1

2
(∂lgmk + ∂kgml − ∂mgkl) , (2.18)

the formula (2.17) is finally re-written as follows,

∂lφ
n
m =

1

2
gnr∂lgrm , (2.19)

which readily agrees with the defining physical relation (2.11).

Linear separation of the physical tensor potentials

Making use of the following set of identities for the metric tensor [5, 15],

∂mglj = 2gkj∂mφ
k
l = 2gkl∂mφ

k
j

∂mg
ik = −2gli∂mφ

k
l = −2glk∂mφ

i
l , (2.20)

as well as a similar set for the rescaled metric tensor,

∂mglj = 2gkj∂mφ̄
k
l = 2gkl∂mφ̄

k
j

∂mgik = −2gli∂mφ̄
k
l = −2glk∂mφ̄

i
l , (2.21)

which can be deduced from the defining physical relation (2.11), and recalling
the following formula for the Christoffel symbols,

Γikl = gimΓmkl , (2.22)

we find linear relationships between the Christoffel symbols and the derivatives
of the physical tensor potentials [15],

Γikl[∂φ̂] = 2∂(lφ
i
k) − gimgj(l∂mφ

j
k)

= 2∂(lφ
i
k) − gimgj(l∂mφ

j
k) . (2.23)

Now, recalling eq. (1.5) we have seen that the Christoffel symbols linearly
separate into the Inertial (Coordinates) symbols Sikl and the (real) Gravitational
symbols ∆i

kl. Eq. (2.23) therefore tells us that a similar separation occurs for
the physical tensor potentials themselves. So we have,

φ kj = ϕ k
j + χ k

j ; φ̄ kj = ϕ̄ k
j + χ̄ k

j , (2.24)

with (real) gravitational potentials ϕ k
j and inertial (coordinates) potentials χ k

j .
We thus find [15],

∆i
kl[∂ϕ̂] = 2∂(lϕ

i
k) − gimgj(l∂mϕ

j
k)

= 2∂(lϕ
i
k) − gimgj(l∂mϕ

j
k) , (2.25)
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and,

Sikl[∂χ̂] = 2∂(lχ
i
k) − gimgj(l∂mχ

j
k)

= 2∂(lχ
i
k) − gimgj(l∂mχ

j
k) . (2.26)

3 Justifying the Defining Physical Relation

The defining physical relation (2.11) must now yield concrete physical results in
order to justify itself and to make the whole Einstein Real Gravity formulation as
the correct physical interpretation of the equations of General Relativity. Here
we discuss two very simple examples which reproduce exactly known physical
laws. Finally we derive the equation for gravitational radiation and show its
agreement with traditional General Relativity in the weak gravitational field
approximation.

Exact relativistic hydrostatic equilibrium

An isotropic diagonal metric in spherical coordinates (ct, r, ϑ, ϕ) is given as
follows [15],

ds2 = eνc2dt2 − eλ ηαβ [χ̂] dxαdxβ

= e2Φ/c2c2dt2 − e2Ψ/c2dl2 , (3.1)

where the interval dl2 is given as,

dl2 = ηαβ [χ̂] dxαdxβ

= dr2 + r2dϑ2 + r2sin2ϑdϕ2 , (3.2)

and the physical gravitational tensor potentials components given as follows,

ϕ 0
0 ≡

Φ

c2
=
ν

2
; ϕ β

α ≡
Ψ

c2
δ βα =

λ

2
δ βα , (3.3)

with Φ and Ψ describing the Newton and spatial potentials respectively (χ 0
0 =

0 ; η00[χ̂] = η00 = −1), and to which correpond the following characteristics,

χ 0
0 = χ 1

1 = 0

χ 2
2 = 1

2 ln(r2)

χ 3
3 = 1

2 ln(r2sin2 ϑ)

χ = χ k
k = 1

2 ln(r4sin2 ϑ)

ηij [χ̂] = (−e−2χ 0
0 , ηασ(e−2χ̂) βσ )

= (−1 , 1 , e−ln (r2) , e−ln (r2sin2 ϑ) )√
−η[χ̂] = eχ = e

1
2 ln (r4sin2 ϑ) , (3.4)

where the metric determinant is expressed as follows,√
−g[φ̂] ≡

√
−η[χ̂]

√
−gc[ϕ̂]

= eχ+ϕ

= eχ+(Φ+3Ψ)/c2 . (3.5)
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Note that
√
−gc[ϕ̂] corresponds to the metric determinant

√
−g[φ̂] in carte-

sian coordinates where we have χ k
j = χ = 0.

Let us now find some general relations for the potentials (Φ,Ψ) in the case of
a spherically symmetric spacetime-dependent perfect pascalian fluid described
by the following energy-momentum tensor,

√
−g τ (E)k

j =
√
−g [ ε uju

k + pkj ] , (3.6)

with pressure stress-tensor pkj ( p0
0 = p0

α = pβ0 = 0 ; pβα = p δβα ), energy density ε

and 4-velocity ui. Here we shall further restrict ourselves to the case of a slow

moving fluid ( |v|c � 1 ; uα → 0 ; u0u
0 → −1).

Making use of the Freud-Euler equation (2.16), we develop as follows,

∂k(ln
√
−g) τ

(E)k
j + ∂kτ

(E)k
j = τ (E)l

m ∂jφ
m
l

→ ∂k(χ+ ϕ) τ
(E)k
j + ∂kτ

(E)k
j = τ (E)l

m ∂j(ϕ
m
l + χ m

l ) . (3.7)

In spherical coordinates we have χ 0
0 = χ 1

1 = 0 and so the j = 0 and j = 1
components yield respectively,

ε ∂0

(Φ + 3Ψ

c2

)
+ ∂0ε = ε ∂0

(Φ

c2

)
− 3p ∂0

(Ψ

c2

)
p ∂r

(Φ + 3Ψ

c2

)
+ ∂rp = −ε ∂r

(Φ

c2

)
+ 3p ∂r

(Ψ

c2

)
, (3.8)

which finally leads to,

3 ∂0

(Ψ

c2

)
= − ∂0ε

(ε+ p)

∂r

(Φ

c2

)
= − ∂rp

(ε+ p)
, (3.9)

in agreement with the results of Landau and Lifchitz [16].
Given an equation of state p = p(ε), these equations can be integrated as

follows [15, 16],

3
(Ψ

c2

)
= −

∫
dε

(ε+ p)
+ f1(r)(Φ

c2

)
= −

∫
dp

(ε+ p)
+ f2(t) , (3.10)

with arbitrary functions f1(r) and f2(t).
While the first equation of (3.9) reveals that a gain or loss in the fluid energy

density is accompanied by a change of the (radial) size of the fluid (Ψ acting as
a spatial scale), the second equation is nothing but the exact and familiar rela-
tivistic hydrostatic equation relating variations of the Newton potential (radial
gravitational force) to radial variations of the fluid pressure.

Exact second law of motion

The trajectory of a particle of mass m in a gravitational field is given by the
geodesic equation (1.4),

dui

ds
= −Γiklu

kul . (3.11)
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At velocities much smaller than the speed of lignt, the 4-velocity ui is ex-
pressed as follows,

u0 =
1√
−g00

; uα ' 0 , (3.12)

and so the particle’s acceleration in the gravitational field is given by,

d2xα

ds2 = −Γα00u
0u0 = − Γα00

(−g00)
. (3.13)

In cartesian coordinates, we have Γikl = ∆i
kl and φ kj = ϕ k

j (χ k
j = 0).

Making use of the relationship (2.25) we then get,

d2xα

ds2 = − ∆α
00

(−g00)
=

1

g00

[
2∂0ϕ

α
0 − gαmgj0∂mϕ

j
0

]
. (3.14)

Now for an isotropic non-stationary (non-rotating) and constant metric (g0γ =
0), we have ϕ 0

0 = Φ/c2 with Φ the newtonian gravitational potential. We there-
fore arrive at the following expression,

d2xα

ds2 =
1

g00
(−g00) ∂αϕ 0

0

= − ∂α
(

Φ

c2

)
, (3.15)

which is nothing but Newton’s second law of motion in a gravitational field.

Real gravity equation for gravitational radiation

It is well known that the Einstein tensor G k
i can be decomposed in terms of the

Freud F k
i and Einstein-Pauli E k

i pseudo-tensors as follows [3, 5, 8, 9, 10, 11,
15, 29],

√
−gG k

i =
√
−g
(
R k
j −

1

2
δ kj R

)
=
√
−g (F k

i − E k
i ) , (3.16)

with the Einstein-Pauli pseudo-tensor given as [3, 5, 15],

√
−g E k

j =
√
−g
(
W k
j −

1

2
δ kj W

)
; W = W k

k , (3.17)

where,

√
−gW k

j ≡ 1

2
( Γkrs∂jg

rs − Γsrs∂jg
rk )

= − 2 gks
(
∂j φ̄

m
l ∂mφ̄

l
s −

1

2
∂j φ̄

m
l ∂sφ̄

l
m +

1

4
∂j φ̄∂sφ̄

)
, (3.18)

and the Freud pseudo-tensor expressed in the following manner,

√
−gF k

j ≡ ∂l(
√
−gB kl

j ) , (3.19)
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with the antisymmetric super-potential B kl
j given by [3, 5, 15],

√
−gB kl

j =
√
−gB [kl]

j = − 1

2

[
δ kj (grsΓlrs − glrΓsrs)

+ δ lj (gkrΓsrs − grsΓkrs) + (glrΓkjr − gkrΓljr)
]
.

(3.20)

The anti-symmetry of the super-potential leads directly to the so-called Freud
identity [3, 5, 15, 29],

∂k(
√
−gF k

j ) = 0 , (3.21)

which is related to energy-momentum conservation in general relativity.
Making use of eq. (2.23) for the Christoffel symbols, the Freud pseudo-tensor

becomes, after some algebra,

√
−gF k

j = −
√
−g2 φ̄ kj + ∂l

[
gmk∂mφ̄

l
j + (δ kp δ

l
j − δ lp δ kj )gmr∂mφ̄

p
r

]
≡ −

√
−g2 φ̄ kj + [GT] kj , (3.22)

where the gauge term [GT] kj is defined as,

[GT] kj ≡ [gt] kj −
1

2
δkj [gt]

[gt] kj ≡ ∂l
[
gmr (δ kr ∂mφ̄

l
j + δ lj ∂mφ̄

k
r )
]

[gt] = [gt] kj δ
j
k = 2 ∂l( gmr ∂mφ̄

l
r ) , (3.23)

and the curved spacetime d’Alembertian given by,

√
−g2 ≡ ∂l( glm∂m ) . (3.24)

Making use of the explicit expression (3.22) for the Freud pseudo-tensor in
terms of the tensor potentials and recalling Einstein’s equations (2.8), we arrive
at the desired field equation [15],

−
√
−g2 φ̄ kj =

8πk

c4
√
−g (τ

(E)k
j + t̃

(E)k
j ) − [GT] kj . (3.25)

To proceed further, we go to the so-called harmonic gauge [16] defined as
follows,

grsΓkrs = −∂rgkr = ∂rφ̄
r
j = 0 . (3.26)

In such a gauge, the gauge term (3.23) and d’Alembertian (3.24) simply
become,

[GT]
(H)k
j = −2 grm ∂lφ̄

k
r ∂mφ̄

l
j = −2 grk ∂lφ̄

m
r ∂mφ̄

l
j

√
−g2 = glm ∂l∂m . (3.27)

Insertion into (3.25) yields,

−glm ∂l∂m φ̄
k
j =

8πk

c4
√
−g (τ

(E)k
j + t̃

(E)k
j ) − [GT]

(H)k
j . (3.28)

In a weak gravitational field, we need only to keep terms linear in the tensor
potentials φ̄ kj . So quadratic terms such as the gravitational energy-momentum
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pseudo-tensor t̃
(E)k
j , because of its relation (2.8) with the Einstein-Pauli pseudo-

tensor E k
j of eqs. (3.17)-(3.18), as well as the gauge term (3.27) in the harmonic

gauge drop out.

Identifying the Landau-Lifchitz gravitational wave field ψ
(LL)k
j as follows,

1

2
ψ

(LL)k
j ≡ φ̄ kj , (3.29)

the field equation (3.28) finally becomes, in the weak gravitational field approx-
imation,

− 1

2
ηlm ∂l∂m ψ

(LL)k
j =

8πk

c4
τ

(E)k
j , (3.30)

which is the Landau-Lifchitz wave equation for gravitational radiation from a
matter source [16, 30, 31].

4 Concluding Remarks

In this work, we tried to re-organize the logical structure of the derivation of
the Einstein Real Gravity formulation of General Relativity in a way which
emphasizes its fundamental physical basis. It’s connection to newtonian theory
is very natural, contrary to the traditional approach to General Relativity which
connects to Newton’s theory only in a weak gravitational field situation [16, 17,
18, 19, 30, 31].

Both formulations are algebraically completely equivalent. But the introduc-
tion à la Yilmaz [5, 15] of the tensor potentials into the game changes things
fundamentally. The most striking consequence is the complete elimination of
event horizons and singular objects from General Relativity.

Einstein Real Gravity is a strong gravitational field theory, contrary to the
traditional formulation, which runs very fast into troubles when continued to
the strong fields domain. Although the Schwarzschild solution seems to be a
solution of Real Gravity, it does not describes black holes because the physical
gravitational field is shifted to the tensor potentials. Furthermore, even in the
traditional formulation context, Mitra [32, 33] already argued that the only con-
sistent Schwarzschild solution is the extreme zero mass case, i .e. flat Minkowski
spacetime.

In view of the recent literature on astronomical black holes [34, 35, 36, 37]
and gravitational waves [38, 39, 40, 41, 42], one may ask if not black holes, what
are the densed black objects observed from a variety of sources?

Observationally, one is able to see that they are heavy and dense objects
characterized by very high redshift. However no event horizon has ever been
observed and none ever will. Event horizons are unobservable in principle.

The answer to the question may very well lie in a new theoretical class of
astrophysical objects called eternally collapsing (ECOs) or magnetic eternally
collapsing objects (MECOs). The theory of ECOs has originally been developed
by Mitra [43, 44] as a new class of radiation pressure Eddington balanced highly
redshifted gravitationally collapsed objects.

The theory of MECOs by Robertson and Leiter [45] added an intrinsic mag-
netic field to the properties of these objects and identified whole classes of as-
tronomical objects such as galactic black hole candidates (GBHCs) and active
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galactic nuclei (AGNs) as potential MECOs candidates. Being magnetic, as
seemingly observed from astrophysical data [46, 47, 48], they cannot be black
holes. Black holes do not have an intrinsic magnetic field.

Additional works by Rudolph Schild from the Harvard-Smithsonian Center
for Astrophysics came in support of the MECO theory [49, 50, 51].

So as can be appreciated, there ARE interesting viable alternatives to tradi-
tional astrophysical theories or models of astronomical objects and astrophysi-
cists are encouraged to keep an objective and open mind before prematurely
identifying such astronomical objects.

It is in the domain of strong gravitational fields that the Real Gravity theory
separates itself from traditional General Relativity. It is such a domain that
astrophysicists and astronomers must be exploring with greater emphasis.
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