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Abstract

Einstein Real Gravity (RG) is Einstein General Relativity (GR) with
an exponential parametrization of the metric tensor. The tensor poten-
tial field in the argument of the exponential is interpreted as the physical
spin-2 gravitational field. This allows the linear separation of the space-
time curving real gravitational tensor force from the other non-tensor non
spacetime curving inertial forces in the Christoffel symbols. The use of
cartesian coordinates filters out these non-tensor forces and leads to a de-
scription of GR as the pure RG affine tensor theory. A modified expression
for the hydrostatic Tolman-Oppenheimer-Volkoff formula for stellar equi-
librium is derived and applied to the ultra-relativistic spherical perfect
fluid case. An exact analytical solution is found.
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1 Einstein Real Gravity Theory

Einstein General Relativity (GR) describes the laws of nature as seen from
general reference frames, whether inertial or not. The equivalence principle
assures us that the general motion of particles or material bodies under (loosely
called) gravitational forces are equivalently described by observers in non inertial
reference frames. But these loosely called gravitational forces covered by the
equivalence principle are known not to be restricted to real (pure or actual)
gravity. The equivalence principle in fact unifies the real gravitational force with
other forces known as inertial forces such as the centrifugal and Coriolis forces
of classical mechanics. All of these forces are traditionnally called gravitational
forces by general relativists.

The real gravitational force is very different from the other inertial forces.
Unlike the latters, the real gravitational force vanishes at infinity [1]. Further-
more, unlike the others, it cannot be removed globally by a change of reference
frame. The other inertial forces do disappear when going to an inertial refer-
ence frame (cartesian or natural coordinates [1, 2]). The reason why the real
gravitational force connot be made to disappear is because it curves spacetime
[1, 2, 3, 4]. The other forces do not, although they remain unified with the real
gravitational force through general relativity and the equivalence principle.

One realizes that the equivalence principle is too wide a principle, englobing
too many physical forces. The description of real gravity is then cluttered by
these unwanted forces which complicate unnecessarily the dynamics. It thus
seems reasonable to split general relativity into two parts [3, 4, 5, 6, 7], one
covering the flat spacetime inertial forces which should be incorporated into
a generalization of special relativity, and another one dealing exclusively with
curved spacetime phenomena, i .e. the real gravitational force which we call
Einstein Real Gravity (RG).

Such a linear separation of forces can only be accomplished with the aid of
the Yilmaz exponential parametrization of the metric tensor [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16], written in terms of so-called tensor potentials φ ji as
follows,

gij = (e2(φÎ−2φ̂)) ki ηkj = ψ ki [Σ̂] ηkj , (1.1)

ψ ki [Σ̂] ≡ (e−4Σ̂) ki , (1.2)

(Σ̂) ji = φ̄ ji ≡ φ ji −
1

2
δ ji φ , (1.3)

in which ηij = (−1, 1, 1, 1) is the flat spacetime metric in cartesian coordinates

(which defines a galilean reference frame [1]) and where (φ̂)ji = φji and (Î)ji = δji
with trace φ ≡ φ ii = −φ̄. Note that the metric determinant

√
−g is given by√

−g = e2φ = e−2φ̄.

As discussed in previous works [3, 4, 5, 6, 7], the Yilmaz tensor potentials φji
are related linearly to Newton’s gravitational potential, unlike the traditional
metric representation of GR. To lowest order in Newton’s constant, the tra-
ditional metric representation is only the first order term of the exponential
parametrization representation and so constitutes only a weak field description.
Note that both representations, to this point, equally agree with all observa-
tional and experimental tests of weak field general relativity [13].
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Unlike the traditional weak field metric representation, the strong field ex-
ponential parametrization displays no event horizon. Therefore black holes do
not exist in this parametrization and no singularity ever develop [9, 10, 11, 12,
13, 14, 15, 16]. The universe is everywhere regular, in complete agreement with
basic observations.

Let us now take into consideration the existence of the two physically inde-
pendent and separate gravitational potentials representing respectively the pure
or real gravitational potentials ϕji and the coordinates or inertial potentials χji
expressed in the following manner [3, 4, 5, 6, 7],

Σ̂ = Φ̂ + Ω̂ ; φ ji = ϕ j
i + χ j

i , (1.4)

leading to the following metric tensor,

gij = ψ ki [Σ̂] ηkj = ψ ki [Φ̂ + Ω̂] ηkj , (1.5)

with the definitions,

(Φ̂) ji = ϕ̄ j
i ≡ ϕ j

i −
1

2
δ ji ϕ , (1.6)

(Ω̂) ji = χ̄ j
i ≡ χ j

i −
1

2
δ ji χ . (1.7)

For diagonal metrics such as the central symmetric isotropic spacetime [5, 7],
the gravitational and inertial potentials are also diagonal and so eq. (1.5) for
the tensor potentials φ ji cleanly factorizes as follows,

gij = ψ ki [Σ̂] ηkj = ψ ki [Φ̂ + Ω̂] ηkj = ψ ki [Φ̂] ηkj [Ω̂], (1.8)

where we defined,
ηkj [Ω̂] ≡ ψ ik[Ω̂] ηij , (1.9)

which is a coordinate transformation from inertial (cartesian) to non inertial
(spherical, cylindrical, etc.) flat spacetime coordinates.

Yilmaz exponential parametrization of the metric now leads to the following
expression for the Christoffel symbols in terms of the tensor potentials φ̄ ji ,

Γikl[Σ̂] = −4∂(lφ̄
i
k) + 2gim∂mφ̄

j
(lgjk) . (1.10)

Recalling the separation (1.4)-(1.7) in terms of the real gravitational poten-
tials ϕ̄ji and the inertial potentials χ̄ji , we get the following linear separation of
the Christoffel symbols,

Γikl[Σ̂] = ∆i
kl[Φ̂] + Sikl[Ω̂] , (1.11)

in which we defined the Gravitational symbols ∆i
kl and Inertial symbols Sikl as

follows,
∆i

kl[Φ̂] ≡ −4∂(lϕ̄
i
k) + 2gim∂mϕ̄

j
(lgjk) , (1.12)

and,
Sikl[Ω̂] ≡ −4∂(lχ̄

i
k) + 2gim∂mχ̄

j
(lgjk) . (1.13)

For general and inertial (cartesian) coordinates, we have respectively,

Γikl = Sikl + ∆i
kl , (1.14)
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Γ′
i
kl = S′

i
kl + ∆′

i
kl , (1.15)

with the following transformation formula,

Γikl = Γ′
s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
+

∂xi

∂x′s
∂2x′

s

∂xk∂xl
, (1.16)

and so,

Sikl + ∆i
kl = (S′

s
rp + ∆′

s
rp)

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
+

∂xi

∂x′s
∂2x′

s

∂xk∂xl
. (1.17)

Now the Inertial symbols are pure coordinate transformations from inertial
(cartesian) x′

s
to general xk coordinates,

Sikl =
∂xi

∂x′s
∂2x′

s

∂xk∂xl
, (1.18)

which leads directly to S′
s
rp = 0 in inertial (cartesian) coordinates. This is so

because the only transformations between inertial coordinates are linear Lorentz
transformations, which is the statement of vanishing inertial (non-tensor) forces
in inertial coordinate systems.

Now since S′
s
rp = 0, eqs. (1.17)-(1.18) further imply that the Gravitational

symbols ∆i
kl are themselves pure tensors,

∆i
kl = ∆′

s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
, (1.19)

which means that the real gravitational force is a pure tensor force [3, 4, 5, 6, 7].

The fundamental field equation of Einstein Real Gravity

It is well known that the Einstein tensor G k
i can be decomposed in terms of the

Freud F k
i [3, 4, 5, 6, 7, 9, 17] and Einstein-Pauli E k

i [1, 2, 3, 4, 5, 6, 7, 9, 18]
pseudo-tensors as follows,

√
−gG k

i =
√
−g(F k

i − E k
i ) . (1.20)

The Einstein-Pauli pseudo-tensor is given as [3, 4, 5, 9],

√
−g E k

j =
√
−g
(
W k
j −

1

2
δ kj W

)
√
−g E ≡

√
−g E k

j δ
j
k = −

√
−gW , (1.21)

where,

√
−gW k

j ≡ − 8 gks
(
∂jφ

m
l ∂mφ

l
s −

1

2
∂jφ

m
l ∂sφ

l
m +

1

4
∂jφ∂sφ

)
1

2

√
−gW = − 4 grs

(
∂lφ

m
r ∂mφ

l
s −

1

2
∂rφ

m
l ∂sφ

l
m +

1

4
∂rφ∂sφ

)
, (1.22)

and in which we defined the rescaled metric tensor,

gij ≡
√
−ggij ; gij ≡

1√
−g

gij . (1.23)
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The Freud pseudo-tensor on the other hand can be expressed in the following
manner [3, 4, 5, 6, 7, 9, 17, 18],

√
−gF k

j ≡ ∂l(
√
−gB kl

j ) , (1.24)

with the antisymmetric super-potential B kl
j given by [3, 4, 5, 6, 7, 9, 18],

√
−gB kl

j =
√
−gB [kl]

j = −1

2

√
−g
[
δ kj (grsΓlrs − glrΓsrs)

+ δ lj (gkrΓsrs − grsΓkrs)
+ (glrΓkjr − gkrΓljr)

]
, (1.25)

with the property ∂k∂l(
√
−gB kl

j ) = 0. The antisymmetry of the super-potential
in turn leads directly to the so-called Freud identity [3, 4, 5, 6, 7, 9],

∂k(
√
−gF k

j ) = 0 , (1.26)

which is related to energy-momentum conservation in general relativity. After
some algebra, the Freud pseudo-tensor can be expressed as follows [3, 4, 5],

√
−gF k

j = 2
[√
−g2φ kj − ∂l

(
gmk∂mφ

l
j + (δ kp δ

l
j − δ lp δ kj )gmr∂mφ

p
r

) ]
= 2

√
−g2φ kj + gauge terms , (1.27)

with curved spacetime d’Alembertian defined as,

√
−g2 ≡ ∂l(g

lm∂m) . (1.28)

Defining now the mixed indices pseudo-tensor current j kj as follows,

8πk

c4
√
−g j kj ≡

√
−g(G k

j + E k
j ) , (1.29)

we arrive at the following relationship,

√
−gF k

j =
8πk

c4
√
−g j kj . (1.30)

Recalling the Freud identity (1.26), we find the current conservation law,

∂k(
√
−g j kj ) = 0 . (1.31)

Setting the gauge terms to zero (Newton gauge) in eq. (1.27), the field
equation becomes,

√
−g2φ kj =

4πk

c4
√
−g j kj , (1.32)

which is similar to the field equation of electrodynamics. This is the fundamental
equation of Einstein general relativity (GR) when the tensor potentials φ kj are
interpreted as the physical gravitational field instead of the metric tensor. This
is a direct consequence of the exponential parametrization of the metric.

This formulation of GR is particularly useful because the field equation yields
directly the gravitational potential for any type of matter or radiation source.
One does not choose a metric ansatz for given astrophysical or cosmological
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problems. One just enters a source term with its physical symmetries in the
rhs of the field equation and the corresponding gravitational potential can be
calculated in principle from there. Just plug in the desired source and obtain
the gravitational potential. The metric and curvature can be calculated from
there afterward.

The field equation (1.32) is valid in any coordinate system, whether curvilin-
ear or cartesian. However, as discussed earlier, the use of curvilinear coordinates
necessarily creates additional non-tensor forces in the description of the system,
the so-called inertial forces, which clutter the dynamics of the real gravitational
field. To get a clean view of the real gravitational physics, we are now con-
straining ourselves to a description in terms of cartesian (natural) coordinates.
In such an inertial reference frame, the inertial potentials and inertial forces
vanish.

In such a reference frame, the tensor potentials are given by the real grav-
itational potentials (φji = ϕji ) and the Christoffel symbols given by the Grav-
itational symbols (Γikl = ∆i

kl) which are true tensors [3, 4, 5, 6, 7]. Einstein
general relativity then becomes an entirely localized (no pseudo-tensors) affine
tensor theory described as follows [3, 4, 5],

G k
j =

8πk

c4
τ

(E)k
j ; E k

j =
8πk

c4
t
(E)k
j ; j kj = τ

(E)k
j + t

(E)k
j , (1.33)

with matter τ
(E)k
j and real gravitational t

(E)k
j energy-momentum (affine) tensors.

The field equation (1.32) is then re-written as (in the Newton gauge),

√
−g2ϕ k

j =
4πk

c4
√
−g (τ

(E)k
j + t

(E)k
j ) ; ∂k[

√
−g(τ

(E)k
j + t

(E)k
j )] = 0 ,

(1.34)
in which, in cartesian coordinates, the gravitational energy-momentum tensor
is given as,

√
−g t(E)k

j =
c4

8πk

[
− 8 gks

(
∂jϕ

m
l ∂mϕ

l
s −

1

2
∂jϕ

m
l ∂sϕ

l
m +

1

4
∂jϕ∂sϕ

)
+ 4 δkj grs

(
∂lϕ

m
r ∂mϕ

l
s −

1

2
∂rϕ

m
l ∂sϕ

l
m +

1

4
∂rϕ∂sϕ

) ]
.

(1.35)

Let us now consider the general case of an imperfect fluid source described
by the following matter energy-momentum tensor [3, 4],

√
−g τ (E)k

j =
√
−g [µ0c

2 uju
k + p kj ] , (1.36)

with proper pressure density stress-tensor
√
−g p kj (p 0

0 = p 0
α = p β0 = 0 ; p βα 6=

0), proper mass density
√
−g µ0 and 4-velocity ui.

In a constant and static gravitational field characterized by gik 6= gik(x0)
and g0α = 0, the 4-velocity ui is given as follows [1, 2, 3, 4, 5],

u0 =
1

√
−g00

√
1− v2/c2

; uα =
vα

c
√

1− v2/c2
; uku

k = −1 , (1.37)

with v2 = vαv
α and vα = c√

−g00
dxα

dx0 .
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We are interested in a slow moving fluid ( |v|c � 1) and so, at lowest order in
velocity expansion, we have,

ϕ k
j = −Φ

c2
δ 0
j δ

k
0 ; ∂kϕ

k
j = 0 , (1.38)

with time-independent Newton potential Φ. This leads to the following ex-
pression for the rescaled metric tensor at the lowest order of the slow velocity
expansion,

g00 = −e−4Φ/c2 ; gαβ = ηαβ ;
√
−g = e−2Φ/c2 . (1.39)

Similarly, the curved spacetime d’Alembertian acting on a time-independent
gravitational field becomes [3, 4, 5],

√
−g2 → ηαβ∂α∂β = ηαβ∇α∇β ≡ ∇α∇α = ~∇·~∇ = ~∇2 , (1.40)

and to the same approximation, the Einstein gravitational energy-momentum
affine tensor is evaluated as,

√
−g t(E)0

0 = − 1

8πk
~∇Φ·~∇Φ

√
−g t(E)0

α =
√
−g t(E)β

0 = 0
√
−g t(E)β

α =
1

4πk
(∇αΦ∇βΦ− 1

2
δ βα

~∇Φ·~∇Φ) , (1.41)

in which we defined the contravariant nabla derivative as ∇β ≡ ηαβ∇α. How-
ever we still have ∂β ≡ gαβ∂α. Therefore although ∂α = ∇α we must remind
ourselves that ∂β 6= ∇β .

So, to lowest order in the velocity expansion, the fundamental field equation
(1.32) of general relativity yields the following non-trivial relationships [3, 4, 5],

~∇2Φ =
4πk

c2
[
√
−g µ0c

2 +
1

8πk
~∇Φ·~∇Φ ] ,

0 =
4πk

c4
[√
−g p βα +

1

4πk
(∇αΦ∇βΦ− 1

2
δ βα

~∇Φ·~∇Φ)
]
. (1.42)

In the second row, we immediately recognize the newtonian gravitational

stress tensor t
(N)β
α [3, 4, 5],

√
−g t(N)β

α =
√
−g t(E)β

α =
1

4πk
(∇αΦ∇βΦ− 1

2
δ βα ~∇Φ·~∇Φ) , (1.43)

which is the spatial part of the Einstein-Pauli gravitational energy-momentum
tensor.

The second row of eq. (1.42) yields the following relationships,

√
−g p βα =

√
−g τ (E)β

α = − 1

4πk
(∇αΦ∇βΦ− 1

2
δ βα ~∇Φ·~∇Φ) ,

√
−g p αα =

√
−g τ (E)α

α =
1

8πk
~∇Φ·~∇Φ = −

√
−g t(E)0

0 . (1.44)

Therefore the trace of the pressure density stress tensor
√
−g p αα , which is

the trace of the spatial part of the Einstein matter energy-momentum tensor
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√
−g τ (E)α

α , is given by the negative of the Einstein-Pauli gravitational energy

density −
√
−g t(E)0

0 .
Inserting this result into the first row of eq. (1.42), we find the following

most interesting results,

~∇2Φ =
4πk

c2
√
−g [µ0c

2 + p αα ] ,

=
4πk

c2
√
−g [ τ (E)α

α − τ (E)0
0 ] , (1.45)

which implies that the source of the newtonian gravitational potential is really
the total energy density given by the sum of the matter energy density with the
gravitational energy density, itself evaluated solely from the trace of the spatial
part of the matter energy-momentum tensor. So the total energy density of
matter with gravity can be evaluated with only the knowledge of the matter
energy-momentum tensor, a result first obtained by Tolman in 1930 [1, 2].

For a perfect fluid, we have p αα = 3p with p being the proper pressure density
of the fluid. Eq. (1.45) is then re-written as [1],

~∇2Φ =
4πk

c2
√
−g [µ0c

2 + 3 p ] . (1.46)

Defining the Yilmaz mass and pressure tensor densities as follows,

√
−g µ(Y)

0 c2 =
√
−g µ0c

2 +
1

8πk
~∇Φ·~∇Φ =

√
−g [µ0c

2 + p αα ] ,

√
−g p(Y)β

α =
√
−g p βα +

1

4πk
(∇αΦ∇βΦ− 1

2
δ βα ~∇Φ·~∇Φ) , (1.47)

the relations (1.42) are re-written as follows,

~∇2Φ =
4πk

c2
√
−g µ(Y)

0 c2 = −4πk

c2
√
−g τ (Y)0

0

0 =
√
−g p(Y)β

α =
√
−g τ (Y)β

α , (1.48)

which are nothing but the Yilmaz gravitational field equations [3, 4, 5, 9]. Misner
[19] correctly stated that the Yilmaz theory led to a zero pressure theory, but
he did not realize that the expressions (1.48) included both the matter and
gravitational energy-momentum tensor contributions. Alley, Aschan and Yilmaz
[20], in their refutation of Misner’s article, correctly emphasized this crucial
point.

In fact, as noted previously by the author [3, 4], Yilmaz and Einstein general
relativity are completely equivalent and are related to each other by the following
relationships,

τ
(Y)k
j = τ

(E)k
j + t

(E)k
j

t
(Y)k
j = −t(E)k

j . (1.49)

An equivalence which can only be held when making use of the Yilmaz expo-
nential parametrization of the metric tensor in both theories.
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2 Gravitational Energy and Hydrostatic Equi-
librium

Several decades ago, past authors [1, 2, 21, 22] have tackled the problem of
gravitational energy and total gravitational mass defect in the context of a
spherically symmetric constant and static gravitational field ( gik 6= gik(x0) ;
g0α = 0 ). In the traditional formulation of Einstein general relativity (GR),
this relates to the Schwarzschild solution.

Tolman [2], Zel’dovich and Novikov [21] as well as Landau and Lifchitz [1]
defined the following conserved total energy E of matter and gravitational
field as follows,

cP 0 = E = E(ZN) = M (ZN)c2 ≡ M (ZN)(R) c2

E(ZN) ≡ −
∫
dV
√
−g [ τ

(E)0
0 + t

(E)0
0 ]

=

∫
V

dV
√
−g [ τ (E)α

α − τ (E)0
0 ]

M (ZN)(r) c2 ≡
∫ r

0

4πr2dr
√
−g(r) [µ0(r)c2 + 3 p(r) ] , (2.1)

in which dV = 4πr2dr and (V ,R) are respectively the volume and radius of the
spherically symmetric perfect fluid star interior and M (ZN) its total rest mass,
which includes the gravitational binding energy of its constituents.

The total energy E(S), in the context of the Schwarzschild metric, is equiv-
alently given as [1, 2, 21, 22],

E = E(S) = M (S)c2 ≡ M (S)(R) c2 = E(ZN)

M (S)(r) c2 ≡
∫ r

0

4πr2dr µ0(r)c2 , (2.2)

an equality which is surprising considering the fact that the gravitational energy
is supposed to be included in the expression. But calculation shows it to be true
for the Schwarzschild metric.

According to Weinberg [22] on the other hand, the matter energy alone
(total energy without the gravitational binding energy) is not really well defined.
Weinberg offers us the following definition [22],

E
(W)
1 = M

(W)
1 c2 ≡

∫ R

0

4πr2dr
√
−g(r)µ0(r)c2 . (2.3)

But given the reputed equivalence E(S) = E(ZN) [1, 2, 21, 22] between the
Schwarzschild and the Zel’dovich-Novikov formulae (2.1)-(2.2) for the total en-
ergy, we therefore arrive at the following result for the gravitational energy,

E
(W)
G ≡ E(S) − E(W)

1 = (?) E(ZN) − E(W)
1 > 0 . (2.4)

which is unacceptable since the gravitational energy should really be a negative
binding energy.
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Gravitational Energy in Einstein Real Gravity

Let us therefore revisit these considerations in the context of Einstein Real
Gravity [3, 4, 5, 6]. In this context obviously, the Schwarzschild expression (2.2)
for the total energy is no longer valid. Recalling the field equation (1.46), we see
that what the many authors called the total matter energy given by the Tolman
formula (2.1) is really the source of the gravitational field. However this includes
the gravitational energy contribution given by the trace of the Newton gravita-
tional stress tensor with value proportional to +3p. This gravitational energy
has the wrong sign and leads to the problem discussed earlier with Weinberg’s
expressions (2.3) for the matter energy alone.

Physically, as already discussed by Alley, Aschan and Yilmaz [20], the Ein-

stein energy-momentum tensor τ
(E)k
j in eq. (1.45) ought to describe the total

energy-momentum of matter bound by gravity, i .e including its gravitational
binding energy. But the gravitational binding energy of an astronomical body
cannot belong to the source of the gravitational field the body generates, be-
cause otherwise gravity would be self-generating. So we must subtract to the
total energy density of the body its gravitational binding energy. Since this
energy density is negative and proportional to −3p, the internal pressure of the
body, subtracting the binding energy is same as adding up a term proportional
to +3p in the source term of the gravitational field. Recalling the relationships
(1.49) between the Einstein and Yilmaz energy-momentum tensors, we there-
fore find that it is the Yilmaz matter density (1.47) which is the source of the
gravitational potential, i .e the matter density alone.

Since gravity should not be self-generating, we are then led to the following
identification of the matter energy alone in Real Gravity (RG),

E
(RG)
1 = M

(RG)
1 c2 ≡ −

∫
dV
√
−g [ τ

(E)0
0 + t

(E)0
0 ]

= −
∫
dV
√
−g τ (Y)0

0

=

∫
V

dV
√
−g [µ0c

2 + 3 p ]

= E(ZN) . (2.5)

Recalling again the relationships (1.49), we then identify the total energy
of matter and gravitation in Real Gravity (RG) as follows,

E(RG) = M (RG)c2 = −
∫
dV
√
−g τ (E)0

0

= −
∫
dV
√
−g [ τ

(Y)0
0 + t

(Y)0
0 ]

=

∫
V

dV
√
−g µ0c

2

= E
(W)
1 . (2.6)

The gravitational binding energy in Real Gravity (RG) is then simply
given by,

E
(RG)
G = M

(RG)
G c2 = E(RG) − E(RG)

1
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= −
∫
dV
√
−g t(Y)0

0 = −3

∫
V

dV
√
−g p , (2.7)

which corresponds to the Newtonian value [23] and which has the right negative
sign, as it should be for a binding energy.

So the total energy E(RG) is obtained by the Einstein energy-momentum

tensor while the gravitational energy E
(RG)
G is related to the internal matter

pressure. The matter energy alone E
(RG)
1 is then simply given by the difference

of both quantities E
(RG)
1 = E(RG) − E(RG)

G , which is the Tolman formula (2.1),
and is the sole physical source of the gravitational field Φ according to eqs.
(1.45) or (1.48). This is very different from all the previous considerations
[1, 2, 21, 22] for which the Tolman formula gives the total energy. In Einstein
Real Gravity, the Tolman formula yields the matter energy alone, without its
gravitational binding energy, which has been subtracted off by the presence of
the term proportional to +3p.

The Hydrostatic Equilibrium Formula

Recalling the relationships (1.42)-(1.45) between the gravitational potential, the
Einstein mass density and pressure tensor, and making use of the Freud identity
(1.34),

∇α[
√
−g(τ

(E)α
β + t

(E)α
β )] = 0 , (2.8)

we easily derive the following relation,

∇α(
√
−g pαβ) = −∇α(

√
−g t(E)α

β )

= − 1

4πk
(~∇2Φ)∇βΦ

= −
√
−g
c2

[µ0c
2 + p αα ]∇βΦ . (2.9)

Recalling that,

∇α ln
√
−g = − 2

c2
∇αΦ , (2.10)

the expression (2.9) for the Freud identity finally becomes,

∇αp αβ = − 1

c2

[
(µ0c

2 + p αα )∇βΦ − 2 p αβ ∇αΦ
]
. (2.11)

The above equation establishes the condition for the gravitational equilibrium of
an astronomical body of given mass density and internal pressure stress tensor
in the context of Einstein Real Gravity (RG).

Restricting ourselves to the case of a spherically symmetric perfect fluid
in cartesian coordinates, we have p αβ = pδ αβ and p αα = 3p. The equilibrium
equation (2.11) then simply becomes,

∇αp = −(µ0 + p/c2 )∇αΦ . (2.12)

In the case of spherical symmetry (r =
√
x2 + y2 + z2), the above equation

can be re-written as follows,

r2∂rp(r) = −[µ0(r) + p(r)/c2 ] r2∂rΦ(r) , (2.13)
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and the field equation (1.46) for the gravitational potential Φ(r) becomes,

r2~∇2Φ = ∂r[r
2∂rΦ(r)]

=
k

c2
4πr2

√
−g(r) [µ0(r)c2 + 3p(r) ]

=
k

c2
∂r[M

(RG)(r)c2 + 3P (RG)(r) ] , (2.14)

leading to,

r2∂rΦ(r) =
k

c2
[M (RG)(r)c2 + 3P (RG)(r) ] , (2.15)

in which we defined,

M (RG)(r) c2 ≡
∫ r

0

4πr2dr
√
−g(r)µ0(r)c2

P (RG)(r) ≡
∫ r

0

4πr2dr
√
−g(r) p(r) , (2.16)

and so,

∂rM
(RG)(r) c2 = 4πr2

√
−g(r)µ0(r)c2

∂rP
(RG)(r) = 4πr2

√
−g(r) p(r) . (2.17)

Recalling eqs. (2.1) and (2.5), we take note of the following relationships,

M
(RG)
1 (r) c2 ≡ M (RG)(r) c2 + 3P (RG)(r) = M (ZN)(r) c2

M
(RG)
1 (R) c2 = M (RG)(R) c2 + 3P (RG)(R)

= M
(RG)
1 c2 = E

(RG)
1 = E(ZN) , (2.18)

which are expressions for the matter energy alone in Einstein Real Gravity.
Recalling now eq. (2.6), we further get,

M (RG)(R) c2 = M (RG) c2 = E(RG) = E
(W)
1 , (2.19)

for the total energy, which immediately leads to the following expression for
the gravitational binding energy in Einstein Real Gravity,

E
(RG)
G = E(RG) − E(RG)

1 = −3P (RG)(R) . (2.20)

Inserting now eqs. (2.15)-(2.16) into eq. (2.13) finally yields the sought after
relationship,

∂rp(r) = −kµ0(r)M (RG)(r)

r2

[
1 +

p(r)

µ0(r)c2

] [
1 +

3P (RG)(r)

M (RG)(r)c2

]
= −kµ0(r)M

(RG)
1 (r)

r2

[
1 +

p(r)

µ0(r)c2

]
. (2.21)

This is the fundamental hydrostatic equilibrium formula of Einstein Real
Gravity (RG), to be compared with the so-called Tolman-Oppenheimer-
Volkoff equation for the Schwarzschild metric [21, 22],

∂rp(r) = −kµ0(r)M (S)(r)

r2

[
1 +

p(r)

µ0(r)c2

] [
1 +

3P (S)(r)

M (S)(r)c2

]
×
[

1− 2kM (S)(r)

rc2

]−1

, (2.22)
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where we defined,

P (S)(r) ≡ V (r) p(r) ; V (r) ≡ 4πr3

3
. (2.23)

Although similar, the relationships (2.21) and (2.22) differ by the definition

of P (r) and M(r), as well as the Schwarzschild factor
[

1 − 2kM (S)(r)/rc2
]−1

in equation (2.22). The new formula (2.21) does not have singularity problems
at the Schwarzschild radius.

Both formulae lead to the same Newtonian limit p(r)� µ0(r)c2,

∂rp(r) → −kµ0(r)M1(r)

r2
' −kµ0(r)M(r)

r2
. (2.24)

with M(r) the total mass of the star (or astronomical body) at radius r.

Various Energy Definitions in Einstein Real Gravity

We give here a list of expressions of the various energies and quantities defined
in the context of Einstein Real Gravity.

Total energy E(RG) of matter and gravitation :

E(RG) = M (RG)c2 ≡ −
∫
dV
√
−g τ (E)0

0

= −
∫
dV
√
−g [ τ

(Y)0
0 + t

(Y)0
0 ]

=

∫
V

dV
√
−g µ0c

2

=

∫ R

0

4πr2dr
√
−g(r)µ0(r)c2 . (2.25)

Matter energy alone E
(RG)
1 (Tolman relation [1, 2, 21]) :

E
(RG)
1 = M

(RG)
1 c2 ≡ −

∫
dV
√
−g [ τ

(E)0
0 + t

(E)0
0 ]

= −
∫
dV
√
−g τ (Y)0

0

=

∫
V

dV
√
−g [µ0c

2 + 3 p ]

=

∫ R

0

4πr2dr
√
−g(r) [µ0(r)c2 + 3 p(r) ] . (2.26)

Gravitational binding energy E
(RG)
G :

E
(RG)
G = M

(RG)
G c2 ≡ −

∫
dV
√
−g t(Y)0

0
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= −3

∫
V

dV
√
−g p

= −3

∫ R

0

4πr2dr
√
−g(r) p(r) . (2.27)

Total particle number N (RG) :

N (RG) ≡
∫
V

dV
√
−g ν0

=

∫ R

0

4πr2dr
√
−g(r) ν0(r) , (2.28)

with proper particle number density ν0(r).

Sole rest mass energy E
(RG)
0 :

E
(RG)
0 ≡ mpc

2

∫
V

dV
√
−g ν0

= N (RG)mpc
2 , (2.29)

with individual particle rest mass mp.

Thermal energy E
(RG)
β :

E
(RG)
β ≡

∫
V

dV
√
−g e0

=

∫ R

0

4πr2dr
√
−g(r) e0(r)

e0(r) ≡ [µ0(r)c2 + 3 p(r) ]−mpc
2ν0(r) , (2.30)

with proper internal energy density e0(r).

Internal energy W (RG) :

W (RG) ≡
∫
V

dV
√
−g [ e0 − 3p ]

=

∫ R

0

4πr2dr
√
−g(r) [ e0(r)− 3 p(r) ] . (2.31)

From the above definitions, we arrive at the following relationships among
the various quantities,

W (RG) = E
(RG)
β + E

(RG)
G = E(RG) − E(RG)

0

E
(RG)
β = E(RG) − E(RG)

0 − E(RG)
G = E

(RG)
1 − E(RG)

0

E
(RG)
1 = E

(RG)
β + E

(RG)
0

E(RG) = E
(RG)
1 + E

(RG)
G = E

(RG)
0 +W (RG) . (2.32)
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3 Ultra-Relativistic Spherical Fluid

Let us go back to the relationship (2.9) between the pressure and the grav-
itational potential of a time-independent fluid source. For a perfect fluid in
cartesian coordinates we have (p αβ = pδ αβ ; p αα = 3p),

~∇(
√
−g p) = −

√
−g [µ0c

2 + 3p ] ~∇
(

Φ

c2

)
. (3.1)

Assuming the spherical symmetry of the fluid body, the above relationship is
re-written as follows,

r2∂r(
√
−g p) = −

√
−g [µ0c

2 + 3p ] r2∂r

(
Φ

c2

)
. (3.2)

Recalling the relationship (2.15) between the spherically symmetric gravita-
tional potential and its matter source, the above eq. (3.2) leads directly to the
following workable expression for the hydrostatic equilibrium formula,

r2∂r[
√
−g(r) p(r)] = − k

4πr2
M

(RG)
1 (r) ∂rM

(RG)
1 (r) , (3.3)

a form in agreement with the Newtonian expression for the gravitational energy
[23].

For an ultra-relativistic perfect fluid, for instance a cold high-density neutron
star [21, 22], we write the following equation of state,

p =
µ0c

2

3
, (3.4)

which however, in the case of a neutron star, should not remain valid as we
approach the surface of the star since the neutrons are believed to be non-
relativistic there. Nevertheless, assuming the full validity of the above ultra-
relativistic equation of state, we now derive the exact analytical solution to the
hydrostatic equilibrium formula (3.3).

Dimensional inspection motivates the following ansatz,

√
−g(r)µ0(r)c2 = K

(
r0

r

)2

. (3.5)

Inserting this ansatz into the hydrostatic equilibrium formula (3.3) and making
use of the equation of state (3.4) yields the following solution,

Kr2
0 =

c4

24πk
, (3.6)

in which use was made of the relationships (2.16)-(2.18). Therefore we find
straightforwardly,√

−g(r)µ0(r)c2 =
c4

24πkr2
;
√
−g(r) p(r) =

c4

72πkr2
. (3.7)

Let us now compute the gravitational potential Φ(r)/c2. Recalling again
the relationship (2.16) and making use of the solutions (3.7), we arrive at the
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following expressions,

M (RG)(r) c2 =
c4

24πk

∫ r

0

4πr2dr

(
1

r2

)
=

c4r

6k

P (RG)(r) =
M (RG)(r) c2

3
=

c4r

18k
. (3.8)

Inserting these expressions into eq. (2.15) for the gravitational potential
yields for r > 0,

Φ(r)

c2
= −1

3
ln

(
r0

r

)
− R0

r
, (3.9)

with free radii parameters r0 and R0 to be determined from certain boundary
conditions. Note that the second term with R0 in eq. (3.9) is the homogeneous

part given by the solution of the Laplace equation ~∇2Φ = 0. Now since,√
−g(r) = e−2Φ(r)/c2 ;

√
−g00(r) = eΦ(r)/c2 , (3.10)

we finally get (r > 0),

µ0(r)c2 =
c4 e−2R0/r

24πkr2
0

(
r0

r

)4/3

; p(r) =
c4 e−2R0/r

72πkr2
0

(
r0

r

)4/3

, (3.11)

which, for finite positive R0, allow the density and pressure to vanish in the
limit r → 0.

On the other hand the observable mass and pressure densities are given by
the product of the proper densities with the factor

√
−g00(r). This is so since

the invariant spatial volume element in the reference frame of the calculation

(the observer) is given by
√
−g√
−g00

dV for a static spacetime (g0α = 0). Therefore

we get (r > 0),

√
−g00(r)µ0(r)c2 =

c4 e−3R0/r

24πkr2
0

(
r0

r

)
;
√
−g00(r) p(r) =

c4 e−3R0/r

72πkr2
0

(
r0

r

)
,

(3.12)

which again vanish in the limit r → 0.
The results of eq. (3.11) in terms of the proper mass density µ0(r) and

proper pressure density p(r) are to be compared with the high-density neu-
tron star results [21, 22] from the old Tolman-Oppenheimer-Volkoff hydrostatic
equilibrium formula for the Schwarzschild metric,

µ0(r)c2 =
3c4

56πkr2
; p(r) =

c4

56πkr2
, (3.13)

which yields infinite density and pressure in the limit r → 0.
Let us finally compute the various energies associated with the solution (3.7)

or equivalently (3.11) in the context of Einstein Real Gravity. Recalling equa-
tions (2.25)-(2.32), we easily find the following expressions,

E(RG) = E(RG)(R) =
c4R

6k

E
(RG)
1 = E(RG)(R) + 3P (RG)(R) =

c4R

3k
= 2E(RG)
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E
(RG)
G = E(RG) − E(RG)

1 = −c
4R

6k
= −E(RG)

E
(RG)
0 = N (RG)mpc

2

E
(RG)
β = E

(RG)
1 − E(RG)

0 =
c4R

3k
−N (RG)mpc

2

W (RG) = E(RG) − E(RG)
0 =

c4R

6k
−N (RG)mpc

2 , (3.14)

with R the radius of the ultra-relativistic spherical fluid (star).

4 Concluding Remarks

There are many theoretical arguments supporting the use of the tensor poten-
tials ϕ k

j instead of the metric tensor gik as the physical gravitational field [13,
14, 15, 16]. But in this work, we showed that a modified Tolman-Oppenheimer-
Volkoff hydrostatic equation emerges from the Einstein Real Gravity formula-
tion of general relativity, thereby providing a potential way for astrophysicists
to determine experimentally which formulation of general relativity agrees best
with nature.

Einstein Real Gravity is a formulation of general relativity describing the
spacetime curving part of the gravitational force. It is always a pure tensor
force residing at the core of general relativity, but surrounded and attached
by the equivalence principle to additional non-tensor inertial forces unhappily
unified with it.

The use of the natural cartesian coordinates however cleans up the dynamics
and truly eliminates the unwanted non-tensor inertial forces, rendering general
relativity an affine tensor theory of pure spacetime curving gravity. The pure
spacetime curving tensor force is always present in any curvilinear coordinates,
but the use of cartesian coordinates liberates it. The tensorial nature of the
spacetime curving gravitational force implies that pure gravitational energy-
momentum is localized in spacetime, an essential condition for the propagation
of gravitational waves.

If this formulation of GR is the physical one, it is particularly efficient be-
cause the field equation yields directly the gravitational potential for any type
of matter or radiation source. The symmetries of the problem are dictated by
the ones of the physical sources. So one does not have to worry about choosing a
metric ansatz for given astrophysical or cosmological problems. One just enters
a source term corresponding to the physical situation and one gets immediately
the gravitational potential, be it a star, a MECO [15], a galaxy or a given matter
distribution for the whole universe. No need to invent any science-fiction metric.
Just plug in the desired source and get the gravitational potential. The metric
and curvature can be calculated from there afterward. But such calculations of
course often remain very challenging.

From the viewpoint of quantization, the separation of pure gravitational from
inertial forces is a necessity. Only spacetime curving forces need to be quan-
tized, as they solely will describe quantum gravitons. Other inertial (spacetime
non-curving) forces such a the Coriolis or centrifugal forces do not necessitate
quantization. They are coordinate-dependent classical forces and not propa-
gated by quantum particles.
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A thorough analysis of the modified Tolman-Oppenheimer-Volkoff hydro-
static equation found in this paper and its consequences for the stability theory
of the various species of stars as well as a study of star evolution and gravita-
tional collapse is work for the future.

Acknowledgements

Much of the work presented in this paper could not have been done without
the motivating and illuminating exchanges I was blessed to have in the last
few years with the following three eminent astrophysicists: Prof. Stanley L.
Robertson (Southwestern Oklahoma State University), Prof. Rudolph E. Schild
(Harvard-Smithsonian Center for Astrophysics) and Prof. Abhas Mitra (Homi
Bhabha National Institute, Mumbai).

I also benefited from my continuing exchanges with Prof. Vladimir Belinski
(ICRA, Rome), a highly distinguished general relativist from the great Landau
school in Moscow, who, despite his critics of some of my current views regarding
general relativity, remained a precious source of discussions and learning. In the
nineties, we both worked independently, him on the problem of the Hawking
evaporation effect and me on Black Hole Thermodynamics. Our conclusions
converged to the same verdict, i .e. the fallacy of the whole Hawking quantum
black hole theory. Since then, I even abandoned the idea of the very existence
of classical black holes. He did not.

References
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