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Abstract 

 
Inhabitants of Earth live at different angles, depending on where they are located on the 

sphere. The same concept applies in four dimensions to remote locations in a Universe 

with curved space-time.  The premise of this paper is that the overall curvature of space-

time in a non-flat universe causes the space-time at locations that are great distances apart 

to be at different angles.  This necessitates that the speed of light at a remote location be 

different than the local speed of light. Since the constancy of the speed of light is at the 

heart of relativity theory, it is proposed that a small change is required to the relativistic 

equations of motion to accommodate this effect.  This is done by modifying the goo term 

of the space-time metrics.  The results provide some interesting effects.  One, the 

modification brings the Hubble plot for very distant galaxies (with red-shifts up to 1.00) 

more in line with a universe that does not contain dark energy; two, the modification 

nicely explains the anomalous accelerations of the Pioneer spacecraft; and three, the 

modification provides an explanation for the orbital velocities and gravitational lensing of 

galaxies without the need for dark matter.  The calculated value of the density parameter, 

ΩTOT that provides the best fit to observations is about 1.04, which is within the 

Wilkinson Microwave Anisotropy Probe (WMAP) range of 1.02±0.02.  However, this 

theory breaks down when applied to the orbits of the planets since it predicts there should 



be additional precessions that are big enough to be observed.  An alternative explanation 

is proposed. 
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1. Introduction 

The shape of the universe is determined by a balance between the momentum of 

expansion and the pull of gravity. The rate of expansion is expressed by the Hubble 

Constant, H, while the strength of gravity depends on the density and pressure of the 

matter in the universe. If the density of the universe is equal to the "critical density", then 

the universe is flat, otherwise the universe is non-flat.  Recent observations have shown 

that the universe is either flat, or very close to it (Verde, 2004). 

 

Since Earth is a sphere, it is clear that residents of Italy live at a different angle than 

residents of Canada.  Their “up” vectors are not parallel. The same concept must apply in 

four dimensions for remote locations in a Universe with curved space-time.  The main 

thrust of this paper is that in a non-flat universe, observers in different locations 

necessarily exist at different space-time angles.  Their time vectors in space-time would 

not be parallel.  Also their light vectors, which travel locally at a space-time angle of 45º 

with a speed c, would not be parallel.  Thus an observer at Position A in the crude sketch 

in Figure 1 below would observe that light has a slightly different speed at Position B 

than at Position A.   



 

Figure 1 

A variation of the speed of light was evident to Einstein when he discovered the general 

theory of relativity that explained gravity in terms of curved space-time.  In the 1920 

book “Relativity: the special and general theory” he wrote: . . . according to the general 

theory of relativity, the law of the constancy of the velocity of light in vacuo, which 

constitutes one of the two fundamental assumptions in the special theory of relativity [...] 

cannot claim any unlimited validity.   

2. Calculating the Magnitude of the Change in Light Speed 

Let’s assume that a photon is emitted towards us from a light source that is some distance 

away, ro.  The photon’s position at any time is r. As shown in the sketch in Figure 2 

below, the light travels along the space-time geodesic that results from the geometry of 

the path. The photon reaches us traveling at the speed of light, thus the photon arrives at 

Point A with a space-time angle of 45°.  In a flat Universe, a photon emitted at point A 

will travel the segment BA, a straight line in space-time, with a constant angle of 45°. 

However, the path that the photon traces in space-time in a non-flat universe is different 

than if the Universe is flat.  In a non-flat universe, a photon will travel the segment CA, a 

curved line.   



 

 

Figure 2 

 

Since the angle of the geodesic changes over the course of the trip, then the speed of the 

photon in space relative to the observer is not constant.  If the local speed of light for the 

observer is co, then the observed speed of light in a non-flat universe varies with distance 

such that c(r) ≠ co. For a closed universe, the world line of the photon is slightly curved 

so that it arrives at a quicker time than ro/co.  One can see from the sketch that the vertical 

(time) distance from Point C to A is less than from B to A, so the CA trip must be shorter 

in time. 

 



The radius of curvature of the curved path, R, can be calculated from the Friedmann 

equation given below: 
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Where H is Hubble’s parameter, ρ is the density of the Universe, ρcrit is the critical 

density, and ΩTOT is the density parameter, which is ρ/ρcrit. 

 

By considering the geometry, c can be calculated as a function of co, R and r, the distance 

from the observer, as follows: 
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For r<<R and removing higher order terms; 
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This represents a change in the observed speed of light that is caused by the curvature of 

a closed universe.  Since the constancy in the speed of light is at the heart of relativity 

theory, it is proposed that this small effect would not be included in the relativistic 

equations of motion.  



 

3. Modifying the Space-time Metric 

The proper speed of light, c, is the incremental change in proper length (dL) divided by 

the incremental change in proper time (dτ): 

ττ

ν
µν

d
dxdxg

d
dLc

u

==   (3-1) 

If we are to surmise that the speed of light changes with distance as shown earlier, then 

this must be reflected in the space-time metric. The space-time metric determines the 

geometry of space-time, as well as determining the geodesics of particles and light 

beams.  The general formula for a diagonal space-time metric is: 
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The measurement of speed is a coordinate-dependent quantity, and is therefore somewhat 

ambiguous.  To determine speed (distance moved/time taken) you must first choose some 

standards of distance and time, and different choices can give different answers.  This is 

already true in special relativity; if you measure the speed of light in an accelerating 

reference frame, the answer will, in general, differ from c. Since the first term on the right 

hand side includes the speed of light, it is proposed here that the goo term be slightly 

modified to goo-prime in Equation 3-3 below to incorporate the change in c as described 

in Equation 2-3. 
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4. Redshift From a Distant Galaxy With the Modified Metric 

The supernova observations in the late 1990’s brought about a revolution in cosmology. 

Measurements of the geometry and the matter contents of the universe from Type 1A 

supernovae have implied a dynamical age of the universe that accommodates the oldest 

known stellar objects.  However, the geometry that best fits the observed redshifts has 

raised the need for a dark energy component, ΩΛ, consisting of about 75% of the 

universe.  This dark energy is not readily explained within the current particle physics 

theories.  Figure 3 below shows the observed data for redshifts up to 1.0 (Knop et al., 

2003).  Currently the geometry that best fits the observed data has ΩΛ equal to 0.75. 

 

 

Figure 3 

 



To determine the effect of the proposed modification on the redshifts from distant 

galaxies, the goo term of the Friedmann-Lemaître-Robertson-Walker (FLRW) metric is 

modified per Equation 3-3 to provide the following: 
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To conduct a consistent assessment of the change in redshift (∆Z) of supernovae with the 

modified metric, below are the calculations of the redshift with and without the 

modification to the FLRW metric.  Some assumptions have been made to ease the 

calculations. 

 

For the Modified Metric For the Unmodified Metric 

 

For a light beam, ds=0 

Also for dθ=dφ=0, and removing second order 

terms and higher of r/R, results in: 
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For the Modified Metric For the Unmodified Metric 

 

For ao≡1.0 at r =0, and assuming da/dt ≈ Ho 
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The change in redshift due to the modification of the FLRW metric (∆ZMOD) is the 

difference between the two values for Z above, or 
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Figure 4 is a plot of the modified and unmodified values of Z and their difference, ∆Z, for 

a slightly closed universe with ΩTOT equal to 1.04: 

 

 

Figure 4 

One can see that for ΩTOT=1.04, the difference between the two different Z values is 

about -0.08 at the redshift of 0.50, which is a distance of about 6 GLy.  If the observed 

hubble plot in Figure 3 is adjusted by this amount, it falls in line with the (ΩM =1.0, ΩΛ 

=0.0) hubble plot, instead of the (ΩM =0.25, ΩΛ =0.75) hubble plot.  Thus if the 

corrections from the modified FLRW metric in a closed universe are included, the 

observed redshifts would point towards a geometry for a universe that does not contain 

dark energy. 

 



It is noted that ΩTOT equal to 1.04 is consistent with the Wilkinson Microwave 

Anisotropy Probe (WMAP) result, which is 1.02±0.2 (Verde, 2004). 

 

5. Particles in Orbit with the Modified Metric 

The Schwarzschild metric for particles in orbit around a large mass, M, is as follows:  
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This assumes that the θ component is constant at ½π (90°), so that dθ is zero and sinθ is 

unity. 

To model changes in the orbits of particles with the proposed new effect, the goo term of 

the Schwarzschild metric is modified per Equation 3-3, which results in the following 

new metric: 
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Where:  
R
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To ease further calculations, the metric is written as: 
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For the relativistic equations of motion; 
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The appropriate Christoffel symbols are: 
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Where the prime (`) represents the partial differentiation with respect to r.  Inserting these 

surviving Christoffel symbols into the relativistic equations of motion yields the 

following two equations, 
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Integrating these gives the following two equations, 
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Where a and h are constants of integration. We can re-write the metric in Equation 5-3 as, 
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Substituting for dt/dτ, dr/dτ and dφ/dτ, from Equations 5-11 and 5-12, and using Equation 

2-3, yields; 
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Multiplying through by γ, and converting for γ in Equation 5-4; 
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Letting u ≡ 1/r and replacing; 
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Differentiating with respect to φ, dividing by 2h2(du/dφ), and removing the last term on 

the right-hand-side, which is negligibly small for c>>v, yields; 

22

2

2

2

22

2 23
uh
kc

c
uGM

h
GMu

d
ud o++=+
φ

  (5-17) 

Where;  h
d
dr =
τ
φ2   (5-18) 

 



Equation 5-17 is comparable to the equations of a Newtonian orbit; 
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Where;  h
dt
dr =
φ2   (5-20) 

 

The 3GMu2/c2 term in Equation 5-17 above is the relativistic term that was used to 

successfully explain the observed anomaly of the precession of Mercury of 43 arc-

seconds per century.  The 2c2k2/h2u2 term on the right hand side of Equation 5-17 is the 

additional term due to the Schwarzschild metric being modified.   

 

6. The Pioneer Anomalous Acceleration 

Launched about thirty years ago, Pioneer 10 and Pioneer 11 traveled through the solar 

system and are currently outside of the solar system moving at relatively constant 

velocities directly away from the sun.  We have since lost communication with them.  

From earlier data, the Pioneer engineers have computed the spacecraft velocities and 

compared them to the expected values from known gravitational and other effects.  After 

correcting for all possible effects, there is an unexplained constant acceleration (ap) 

towards the sun of 8.74±1.33 x 10-10 m/s2 (Anderson et al., 1998).  It is proposed that the 

Pioneer orbits be re-calculated using the modified equation of motion, Equation 5-17, to 

assess whether this anomaly can be explained. 

 



The Pioneer spacecraft are in a special orbit, essentially moving directly away from the 

sun.  Equation 5-17 above can be used to calculate their motions, making the following 

substitution from Equation 5-18: 
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Thus Equation 5-17 becomes (with u=1/r): 
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Or, isolating the radial acceleration term, 
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The only new term due to the modified Schwarzschild metric is the last term on the right-

hand-side.  Therefore the difference in the Pioneer acceleration due to this new term (ap) 

would be: 
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This result implies that with the revised Schwarzschild metric in Equation 5-1, the 

pioneer spacecraft would undergo an additional constant deceleration that is opposite to 

the direction of motion.  



To find the magnitude of the computed deceleration, the following values are substituted 

into Equation 6-4: 

co = 3 x 108 m/s 

H = 71 km/s/Mpc = 2.3 x 10-18 s-1 

ΩTOT = 1.04 (as found in Section 4) 

This yields a value for the Pioneer acceleration of -7.8 x 10-10 m/s2.  This is in very good 

agreement with the observed acceleration of -8.74±1.33 x 10-10 m/s2. 

 

7. Galactic Orbits with the Modified Metric 

The motions of stars within galaxies have been largely out of line with the expected 

motions based on gravitational forces from the visible matter within the galaxy.  The 

rotational velocities of the stars that are outside of the galactic centre are much higher 

than those expected from gravitational forces from baryonic matter. This has required the 

advent of “dark matter” to explain the differences. 

 

We can apply the modified orbital equation of motion, Equation 5-17, to galactic orbits to 

see the effect. For galactic distances, the relativistic term, which is inversely proportional 

to the distance, is negligible.  If we also assume the galaxy is stable (i.e., not contracting 

or expanding and the stars have circular orbits with d2u/dφ2 =0), then Equation 5-17 

becomes: 
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Where MGalaxy is the mass of the galaxy within the orbit. 



Substituting h = r2dφ/dt = rv, where v is the rotational velocity, and u=1/r yields, 
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The additional term in Equation 7-2 increases in proportion to r, whereas the gravitational 

term decreases in proportion to 1/r.  Thus the new term becomes much more important 

for galaxy dynamics where the distances are much larger than for our solar system.   

 

The “effective” mass of the galaxy (Meff) that would be required to provide the rotational 

velocities for the modified metric can be calculated from Equation (7-2): 
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The addition mass term on the RHS (MADD), which is a result of modifying the metric, 

could be interpreted to be the “dark matter”.  It can be calculated: 
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To find the magnitude of this component at the outskirts of our galaxy, the following 

values are inserted: 

H = 71 km/s/Mpc = 2.3 x 10-18 s-1 

ΩTOT = 1.04 (as found in Section 4) 

r = 15,000 pc (the radius of our galaxy that contains the bulk of the mass, which is 

about 100,000 Ly diameter) 

Inserting these values in Equation 7-5 yields a value of MADD = 25x1041 kg, compared to 

3.6x1041 kg estimation for the mass of visible (baryonic) matter in the galaxy (about 180 

billion solar masses).  This gives a proportion of about 87% for MADD compared to the 

effective mass.  If we interpret this to be the “dark matter” contribution, it is in good 

agreement with the proportion of dark matter in the galaxy found by other analyses 

(about 85-90% dark matter).  This would also require that the dark matter distribution be 

roughly spherically symmetric (not flat), which has been observed. 

 

Thus modifying the metric and applying it to the galactic motions provides an alternative 

for dark matter that could explain the observed rotational velocities of galaxies. 

 

Equation 7-4 can be divided by the volume, 4/3πr3 and differentiated to yield the 

densities at a distance of r as follows: 
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Where ρeff is the “effective” density. 



The density of the additional component is inversely proportional to the radius.  If this is 

the dark matter component, it is consistent with observations that the density of the dark 

matter in a galaxy is a maximum in the centre and gradually decreases as it gets to the 

outermost part, but increases considerably the total size of the galaxy (Innova, 2009). 

 

8. Gravitational Lensing 

A gravitational lens is formed when the light from a very distant, bright source is "bent" 

around a massive object such as a galaxy, or cluster of galaxies, that is between the 

source object and the observer. The process is known as gravitational lensing, and is one 

of the predictions of Einstein's general theory of relativity. 

 

With the revised Schwarzschild metric in Equation 5-1, the expected deflection of light is 

revised.  The resulting angle of deflection is: 
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Where ro is the distance of closest approach of the light to the centre of mass and MDeflector 

is amount of deflecting mass within the radius ro.  The first term on the RHS is from 

Einstein’s theory, which was famously confirmed during an eclipse of the sun.  The 

second term in the RHS is the result of the modified metric.  It is very small 

(immeasurable) for distances within our solar system, but becomes more important for 

distances within the galaxy and within clusters of galaxies. 

 



Using the same concept as in Section 7 by calculating the effective mass (Meff) that 

would cause the deflection, yields: 
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The additional term on the RHS is the same as the MADD term found for the galaxy 

dynamics in Section 7, Equation 7-5.  Thus this could also be interpreted to be the “dark 

matter” contribution to gravitational lensing for galaxy clusters.  Using the following 

inputs for an average gravitational cluster: 

H = 71 km/s/Mpc = 2.3 x 10-18 s-1 

ΩTOT = 1.04 (as found in Section 4) 

ro = 5.0 x 1022m (radius of a cluster with diameter 1023m) 

yields a value for MADD of 7 x 1015 solar masses.  This is about 7 times greater than the 

visible baryonic mass of about 1015 solar masses.  Thus the MADD component (or dark 

matter) comprises about 87% of the total effective mass of the cluster.  This is again 

consistent with observations.  For example, Wikipedia states that in a typical cluster 

perhaps only 5% of the total mass is in the form of galaxies, maybe 10% is in the form of 

hot X-ray emitting gas, and the remainder is dark matter. 

 



It should be noted that the angle of deflection for galaxy clusters using dark matter theory 

should vary with the square of the distance, ro.  This is because it must be assumed that 

the mass of the dark matter inside the cluster varies directly with volume, which varies 

with the radius cubed.  That is: 

 

2
3

2

4
o

o

o

o

Deflector r
r
r

cr
GM

∝∝=θ   (8-3) 

 

However, as shown in Equation 8-1, the variation in the amount of deflection using the 

modified metric varies linearly with ro, or: 
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Thus the changes of the deflection with the relative size of the cluster are not the same 

between the dark matter theory and this curvature theory, as shown in the plot below in 

Figure 5.   For example, one would expect the deflection due to dark matter to be 

increased by a factor of four when the cluster size is doubled, whereas the deflection due 

to the modified metric would only increase by a factor of two.  This should be verifiable 

either with different clusters, or with deflection measurements at different positions 

within the same cluster.  This could provide verification of this theory. 



 

Figure 5 

 

9. Curvature of the Universe 

From the analyses in Sections 4 and 7, this paper proposes that dark matter and dark 

energy do not exist.  However, this appears to conflict with the calculations of ΩTOT of 

1.04, as was done in Sections 4 and 6.  Observations of visible matter in the universe 

indicate it constitutes only about 4% of the critical density.  If so, it would seem that 

ΩTOT should be lower than 1.00, and the universe structure would be open. 

 

Equation 7-6 applies to a galaxy, but can be considered to extend to the universe in 

general to find TOTρ  as a function of the density of matter and the additional curvature 

term as follows: 
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Where Matterρ  is the density of matter in the Universe. 

 

First we can calculate ΩTOT for an empty universe ( EmptyΩ ) by setting Matterρ  to zero and 

dividing by the critical density ( critρ =3H2/8πG), and substituting for k to yield: 
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This becomes a quadratic of EmptyΩ : 
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Using accepted values for c and H and solving the quadratic, below are the calculated 

values of EmptyΩ  as a function of r: 
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EmptyΩ  approaches one for small r and increases to about 1.02 at the observable edge of 

the universe (13.7 GLy).  We must be careful not to extrapolate r too far, since the 

calculations in Equation 2-3 are based on r<<R, where R is about 70 GLy for TOTΩ =1.04. 

If we propose that TOTΩ for the current matter-filled universe is equal to: 

EmptyMatterTOT Ω+Ω=Ω   (9-4) 

Recent observations have estimated that the current visible matter of the universe 

constitutes about 4.6% of the total including dark matter and dark energy.  This would 

mean that MatterΩ  is about 0.044 (0.46/1.04), putting TOTΩ  at about 1.044.  This is close 

to the value of 1.04 found earlier in Sections 4 and 6. 

 

10. Planetary Orbits with the Modified Metric 

The new orbital equation from the revised Schwarzschild metric breaks down when 

applied to the motions of the planets in our solar system.  The planetary motions have 

been observed for centuries and their orbits are known accurately. 

 

To find the effect of this new term on the planetary orbits, we assume an almost circular 

orbit and set u = GM/h2 + η, where η represents the slight deviation from the circular 

orbit.  Inserting this formula into Equation 5-17 and neglecting the term η2 (for η<< 

GM/h2) we find: 

])1cos[()( 1 δφβφη +−= C   (10-1) 

Where C1 and δ are two arbitrary constants of integration. 

 



From Equation 5-17; 
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The fact that β is non-zero means there is a precession in the orbit.  The first term on the 

RHS is the famous relativistic correction for the precession of a planet’s orbit.  The 

second term is a new factor due to the modified Schwarzschild metric. 

 

Table 1 below shows the approximate precessions for the first six planets using the value 

for ΩTOT of 1.04 found in Sections 4 and 6: 

Table 1 

 
Planet 

Relativistic Precession 
(arc-seconds/century) 

Additional Precession Due 
to Modified Metric 

(arc-seconds/century) 
Mercury 43.0 -10.5 
Venus 8.7 -14.3 
Earth 3.9 -16.8 
Mars 1.4 -20.8 

Jupiter 0.06 -38.4 
Saturn 0.013 -52.6 

 

The additional precession due to the modified metric increases the further the planets are 

from the sun.  These new precessions are large enough to have been observed, and have 

not been. 

 

Despite a great deal of effort, the writer cannot currently provide an explanation why the 

adjustment for the speed of light in a closed universe so nicely explains the Hubble plot 

and the motions of Pioneer and the galaxies, and then fails when applied to the planets. 



 

One possible explanation offered here for the lack of precession is that the gravitational 

and universal curvature effects are not additive.  Let’s take a case where there is a large 

volume of the universe that contains no mass.  In this case the local value of ΩTOT would 

be near one (from Section 9), which would indicate from the Friedman equation that this 

space-time volume should be very flat.  However, we could propose that the shape of the 

universe is pervasive, in other words it is consistent even in local volumes with no mass.  

If this is the case, then adding mass to the local volume shouldn’t change its space-time 

shape until the added mass for a given radius, r, exceeds MADD as calculated in Section 7.  

This implies that the effect on the dynamics of motion of space-time curvature is not 

additive, but substitutes.  The larger effect becomes the only contributor.  Thus for areas 

within our solar system, the effect of the sun’s gravitation is greater than any effect from 

the curvature of the universe, and therefore only the gravitational effect is observed.  For 

large spaces like galaxies and beyond, the effect of curvature of the universe is greater 

than the gravitational effect, thus this effect wins out.  This would explain the observed 

orbits of galaxies and red-shifts, and also the lack of effect on planetary dynamics.  The 

agreement with the observed deceleration orbits of the pioneer spacecraft would have to 

be conceded to be coincidental.  This may also be why some globular clusters show no 

evidence of any dark matter at all (Rejkuba et al., 2008) since the gravitational effect is 

generally larger than the effect of curvature for most globular clusters due to their small 

radius and high density. 

 



11. Conclusions and Summary 

This paper proposes that the curvature of space-time in a closed universe causes the speed 

of light to vary with distance from an observer.  To accommodate this, a small change is 

made to the goo term in the relativistic metrics. 

The results provide some interesting effects.  One, the modification brings the Hubble 

plot for very distant galaxies (with red-shifts up to 1.0) more in line with a universe that 

does not contain dark energy; two, the modification nicely explains the anomalous 

accelerations of the Pioneer spacecraft; and three, the modification provides an 

explanation for the orbital velocities and gravitational lensing of galaxies without the 

need for dark matter. 

The calculated value of ΩTOT that provides the best fit to observations is about 1.04, 

which is within the Wilkinson Microwave Anisotropy Probe (WMAP) range of 

1.02±0.02 (Verde, 2004). 

However, this theory breaks down when applied to the orbits of the planets since it 

predicts there should be additional precessions that are big enough to be observed.  An 

alternative explanation is proposed in Section 10. 
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