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Abstract 
Canonical models for bolides in the atmosphere predict that fragile bolides break up at 

much higher altitudes than those actually observed. Here we investigate the hypothesis 

that such fragile bolides may survive to low altitudes by a protective outgassing sheath of 

volatile ices and organics that shields the meteoroid from direct atmospheric heating.  

Surviving meteorite fragments would be expected to possess higher degrees of porosity 

than generally acknowledged meteorite classes. 

 

 

1. Introduction 
Observational data of meteoroids show inconsistencies with the models used to predict 

their behaviour. For millimeter to tens of meter-sized bolides canonical models are unable 

to account for the survival of very fragile bolides to the lower altitudes as has been 

observed. The Maribo meteorite that fell in Denmark on January 17, 2009 had an entry 

velocity of 28.5 km s-1 and has been linked to the Taurids meteor stream, which itself is 

thought to be associated with comet Encke (Haack et al., 2011). When recovered, the 

weak 25g fragment appeared intact but fell apart when touched (Haack et al., 2012). The 

fragment has now been classified as a CM2 carbonaceous chrondite. This is evidence for 

the ability of weak and friable material to survive atmospheric entry and fall as 

recoverable meteorites. A similar example is to be found in the Sri Lankan Polonnaruwa 

meteorite which has a fluffy porous structure, a very low density and stable oxygen 

isotopes pointing to their extraterrestrial provenance (Wallis et al, 2013). 

 

Disintegration of meteoroids descending through the atmosphere is usually described by a 

process of continual ablation where the energy used to heat the bolide is proportional to 

the cube of its speed (u3) (Bronshten 1983); or by catastrophic fragmentation when the 

ram pressure (~ u2) exceeds the tensile strength of the body (Hills & Goda 1991). Both 

these models predict that ~ 1m radii, low-density meteoroids must reach a minimum 

altitude of 80 – 60 km.  

 

Frequently fireballs are observed at altitudes between 90 and 50 km above the Earth; 

however, other fireballs, such as the Tunguska bolide, appear to survive to much lower 

altitudes, exploding at ~ 10 km or less (Chyba, Thomas & Zahnle 1993). Here we 

hypothesise that meteoroids which survive to lower than expected altitudes are composed 

of volatile ices and organics held within and surrounding a denser core. The gases from 

outgassing, volatile material form a sheath around the body thus protecting it from direct 
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interaction with the atmosphere as it decelerates. 

 

Studies of cometary meteoroids suggest that rather than being composed of a 

homogeneous material such as stone or chrondite, they possess both volatile and high 

density refractory components. Investigation of the tracks in aerogel formed by particles 

collected from the comet 81P/Wild 2 indicated that the cometary dust consisted of a 

mixture of cohesive, relatively strong particles as well as particles with a more volatile 

matrix containing smaller stronger grains (Burchell et al. 2008). Similarly, modelling a 

Leonid meteoroid, Coulson (2003) predicted ~90% of the initial mass of cometary 

fragments are a composite of low-density material with the remainder made up of denser 

carbonaceous material in order to correctly describe its trajectory. 

 

Here we consider a meteoroid consisting of a coherent carbonaceous matrix with pores 

filled with water ice and volatile organics. In the next section we model the meteoroid in 

free-space at a solar distance of 1 AU and calculate the rate of sublimation of volatile 

material prior to collision with the Earth’s atmosphere.      

 

2. A composite bolide in free space   

We assume that the bolide was a typical cometary fragment, composed of volatile ices 

and organics held within as well as surrounding a denser core of either a stone or 

chronditic-type material. For simplicity, we suppose that the initial bolide was spherical 

with a radius   a ~ 1 m with an average density of   0.9 gcm-3
. 

 

In free-space within the Solar System, such a cometary body is heated by the Sun. At a 

solar distance R and an angle q  between the Sun and a normal to the surface of the body, 
the energy balance equation is  
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where 
  
F is the energy flux from the Sun, A(υ) is the effective albedo at a given 

frequency  υ,  and 
 
t

T
is the total optical depth between the Sun and the body. The 

energy from the Sun is dissipated through thermal radiation, sublimation of volatile 

particles from the body and conduction of heat throughout the body – the successive 

terms on the right-hand side of Equation 1. Here 
 
T

B
is the equilibrium temperature of the 

body, 
 
Z q( ) is the sublimation rate of the volatile material with a latent heat of 

sublimation  L (usually a function of temperature), and thermal conductivity K . 
  
N

0
, 

e  and s  are Avogadro’s constant, the emissivity and the Stefan-Boltzmann constant 

respectively.    

 

At a distance of 1 AU, a 1m radius body has a temperature approximately equal the 

blackbody temperature of ~ 260 – 270 K (Coulson & Wickramasinghe 2003) depending 

on the effective albedo. Sublimation cooling and the subsequent increase in optical depth 
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from dust production through the release of volatiles lowers typical temperatures of 

cometary bodies to ~ 200 K at 1 AU (Keller 1990). At such values of temperatures energy 

losses from the body occur principally by sublimation (radiation losses are lower by a 

factor ~ 50).   

 

The saturation pressure of the sublimating grains is given by the Clausius-Clapeyron 

equation 
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where 
 
R

gas
 is the universal gas constant and H is the enthalpy change of sublimation 

increased by the enthalpy of vaporisation at temperatures above the melting point of the 

volatile material (Coulson & Wickramasinghe 2003). 

 

Assuming that the volatile material can be treated as an ideal gas, the number density n of 

the sublimating gas particles is related to the saturation pressure by 

 

 
P

sat
» nk

B
T

B
                (3) 

 

where 
 
k

B
 is Boltzmann’s constant. 

 

In the case of thermodynamic equilibrium, the speed v of the sublimating molecules can 

be calculated using  

 

  

v =
K

B
T

B

2pm
u
M

               (4) 

 

where 
 
m

u
is the atomic mass of the sublimating molecules and M the molecular weight. 

 

From Equations 2 – 4 the rate of sublimation can be found using 

 

  

Z q( ) = n q( )
K

B
T

B

2pm
u
M

              (5) 

 

For water-ice at a temperature of 200 K, the sublimation rate is   ~ 5´1022 m2s-1
 and the 

saturation pressure is ~ 1 torr. For a comet composed of volatile organics rather than ice, 

both the sublimation rate and the saturation pressure are reduced by a factor of ~ 0.5, if 

one takes account of the somewhat higher binding energies of the former.  

 

The number density of the sublimating molecules falls off as the inverse square of the 
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distance from the surface of the body. For simplicity we assume that the sublimating 

molecules form a dense region around the body that is at least one mean free-path in 

length. The mean free-path of the sublimating gas,  

 

 

l
g

=
v

Zs
T

                  (6) 

 

where 
  
s

T
~ 10-19 m2is the total scattering cross-section. For water ice at 200 K, 

  
l

g
» 2 cm .      

 

The gases from the sublimating material form a sheath around the body which protects it 

from direct interaction with the atmosphere as it descends at hypersonic speeds. 

 

3. Modelling the bolide in the Earth’s atmosphere 

On its fall through the low density atmosphere, the bolide is heated by direct impact from 

incoming gas molecules from the Earth’s atmosphere. These impacting gas molecules 

deposit energy in the surface as well as sputtering ice molecules (Coulson & 

Wickramasinghe 2003). If the bolide is travelling through the atmosphere with a speed u, 

the sublimation rate is increased by 
  
~ 0.5r

atm
u3L-1 where 

 
r

atm
is the density of the 

atmosphere (Coulson & Wickramasinghe 2003).  

 

For a body entering the Earth’s atmosphere with the minimum initial speed of 12 km s-1, 

the increased sublimation from collisions with incoming air molecules at an altitude of 

105 km is   1.5 ´1023 m-2s-1
, approximately three times greater than the sublimation rate 

from thermally sublimating grains. For a body entering the atmosphere with the 

maximum initial speed of 72 km s-1 the sublimation rate is increased by two orders of 

magnitude to   3.1´1025 m-2s-1
.   

 

As the bolide descends, the increasing densities of the atmosphere and the outflowing gas 

lead to a transition from free molecular flow to hydrodynamic flow. This transition occurs 

when the total mean free path of atmospheric and sublimated molecules (
 
l º l

atm
+ l

g
) is 

less than the bolide radius ( l < a). In the absence of sublimation, for a bolide with a 

radius of 1 m, the hydrodynamic region corresponds to an altitude of ~ 80 km, where 

 (Allen 2000). In the case of a sublimating bolide, the “outgas” density 

increases the altitude at which the transition to hydrodynamic flow occurs. For a 

water-ice dominated bolide, this occurs at an altitude ~ 100 km. 

 

Within the hydrodynamic flow region, the aerodynamic drag is proportional to   u
2
 

(Coulson 2003). We calculate that the total mass lost through sublimation is  < 1%  of the 

original mass of the bolide. Hence the equation of motion for the deceleration of the body 

can be greatly simplified by assuming that the mass remains essentially constant during 

deceleration. Solving the equations of motion for a bolide entering the Earth’s atmosphere 
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under the influence of atmospheric drag, the velocity profile for the body can be written 

as a function of its altitude h 

 

  

u h( ) = u
0
exp -

3C
D

a

r
0

r
m

He
-

h

H
æ

è
ç

ö

ø
÷             (7) 

 

where 
  
r

0
e

-
h

H  is the variation in atmospheric density at a scale-height H (Allen, 2000) 

and 
 
C

D
 is the atmospheric drag coefficient. We assume here that the value of 

 
C

D
 is 

unity for consistency with the majority of existing meteoroid entry models; however, 

studies by Kremeyer et al. (2006) show that an aerosheath around a body travelling at 

hypersonic speeds significantly reduces the drag coefficient, by up to ~ 90% compared 

with a sphere.  In the subsonic regime air-layer drag reduction gives ~80% reduction in 

the coefficient. 

 

In deriving Equation 7, the effect of gravity upon the bolide has been ignored, similar to 

the approach used by Bronshten (1983) and Ceplecha (1993). This assumption is valid so 

long as the magnitude of the drag force is greater than the force of gravity. Such a 

condition is satisfied provided that   
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For a bolide of radius 1 m and density 0.9 g cm-3 at an altitude of 10 km, (i.e after the 

onset of deceleration), the effect of gravity does not become significant unless the 

bolide’s velocity is less than the minimum in-fall speed, 12 km s-1. Under these conditions 

the deceleration of the body may be adequately described using Equation 7. In the 

Appendix, we present an analytical solution for the velocity profile of a meteor when 

gravity is significant.    

 

Figure 1 shows velocity profiles for bolides of radius 1 m entering the Earth’s atmosphere 

at an angle of 
 
p

4
to the downward vertical and an initial speed of 12 km s-1. The region 

of maximum deceleration in Figure 1 occurs at an altitude of around 10 km, where 

mechanical stresses on the body are greatest. If mechanical stresses from deceleration are 

greater than the macroscopic strength of the body, it will fracture.   

      

After the transition to hydrodynamic flow has occurred, a bow-shock of atmospheric and 

sublimated gas particles surrounds the forward hemisphere of the bolide at a distance of ~ 

0.5 m. There are three distinct regions to consider: (1) a sheath of sublimating particles, 

(2) a region of shocked atmospheric and sublimated gas particles, and (3) a larger region 

consisting of unshocked atmospheric gases.  
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The sheath of sublimating gases behaves like the atmosphere of a comet or non-magnetic 

planet in the solar wind. The bow shock stands-off ahead of the bolide, diverting the 

atmosphere around it. The two protective properties compared with a “no sheath” 

situation are: 

 The bow shock is not attached, so fracture due to pressure gradients are much less 
probable. 

 The hot shocked gases make no direct contact and their radiative heating of the 

bolide is reduced by the optical depth of the sublimated particles. 

 

The saturation pressure of the sublimating molecules is greater than the maximum ram 

pressure exerted by the bow shock if the bolide temperature exceeds 300 – 400 K. The 

sheath thickness extends at least one mean free path (~ 10-3 m at a temperature 300 K) in 

front of the body, and from Equation 6 is determined by the speed of flow from the sheath 

into the tail (~100 m s-1).  

 

Protected from direct impact by incoming air molecules, sublimation is limited by the 

radiative heating from the shocked gases. The temperature of the shocked gas can be 

calculated from the pressure and density of the shocked region. Assuming that the 

atmospheric gases are monatomic, the pressure of the shocked gas is 
  
P

s
» 3

4
r

atm
u2 , and 

the velocity of the shocked gas is 
  
u

s
» 1

4
u. The maximum temperature of the shocked 

gas near the stagnation point is of the order  

  

~
3

16

m

k
B

u2                  (8) 

 

where  is the mass of the gas molecules. 
 

Using Equations 7 and 8, the temperature of the shocked gas region is around 50,000 K 

for a 1 m radius bolide entering the Earth’s atmosphere with an initial speed of 12 km s-1, 

and a density of 0.6 g cm-3. The bulk of the kinetic energy from the deceleration of the 

bolide in the atmosphere is dissipated through the heating of the shocked gas region 

rather than in heating the bolide. This calculation ignores the effects of ionization of gas 

molecules which would absorb a fraction of the energy, and so the values of 50,000 K 

should be considered an upper bound for the temperature of the shocked region. Shocked 

gas temperatures of   ~ 104 K imply that radiant heating through the aerosheath region is 

the primary means of heat transfer to the body.  

 

4. Temperature Distribution within the meteoroid 

 

Radiative heating of the bolide from the shocked gas can be described using a modified 

from of Equation 1.     
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The last term on the right-hand side of Equation 9, the thermal conduction term, is 

described by the heat conduction equation, which for spherical geometry takes the form 
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for the internal temperature of a meteoroid of radius a.  Where 

 

k r( ) =
K

Cr
, where K 

is the thermal conductivity and C the specific heat capacity. If k is assumed to be 

independent of r, then equation 10 reduces to a linear, parabolic partial differential 

equation. Solving subject to the boundary conditions  
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Hence we can associate a time constant  with thermal conduction within the meteoroid 

such that 
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                 (11) 

 

Inserting suitable values for the density, thermal conductivity and specific heat capacity 

for a 1 m radius meteoroid composed of ice gives   t » 5´104 s . Typical meteoroid flight 

times through the atmosphere ~ 100 s; hence thermal conductivity is not significant in 1 

m radius ice meteoroids.  

 

The value of the time constant is not very sensitive to the composition of the meteoroid: 

  
t

graphite
» 1.2 ´104 s and

  
t

iron
» 4.1´103 s are still much greater than likely meteoroid 

flight times for 1 m bolides. 
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Bodies with radii less than   5´10-4 m are too small to sustain thermal gradients (Coulson 

& Wickramasinghe 2003). This gives a lower-bound for meteoroid size where thermal 

conductivity is significant. From equation 11, we note that heat conduction is likely to be 

important for ice meteoroids with radii   5´10-4 m < a <1´10-2 m, and for iron and 

graphite bolides with radii in the range   5´10-4 m < a <1´10-1m.  

 

As thermal conductivity is insignificant for 1 m sized meteoroids, radiation emission and 

ablation are the mechanisms by which heat from the shocked gas is partitioned at the 

meteoroid surface. While there is sufficient volatile material able to transfer heat in 

contact with the surface of the bolide, ablation removes the energy from the shocked gas 

without greatly increasing the temperature of the meteoroid. At temperatures < 1,000 K, 

sublimation is the dominant mechanism for heat loss. The rise in temperature of the 

bolide from increased sublimation is discussed in the next section.   

 

5. Radiative Heating of the Meteoroid 

Compression of the air molecules forming the bow shock in front of the meteoroid 

generates temperatures of   ~ 104 K . Heat from the bow shock radiates isotropically, so 

that a considerable fraction of the thermal energy goes into heating the atmosphere rather 

than the meteoroid.   

For a meteoroid of radius a, the region of shocked air is separated by a distance 
  
»

3

2
a  

around the centre of the meteoroid. If the pressure of ablating material forming the 

aerosheath is greater than the pressure exerted by the shocked gas, the aerosheath 

separates the bow shock from the surface of the meteoroid. The thickness of the 

aerosheath is , the mean-free path of the ablating material. From equation 6,  

  l ~ 1mm for bolide temperatures 200 – 400 K, so that the presence of an aerosheath 

does not significantly extend the stand-off distance of the bow shock. Assuming that the 

shocked region can be considered as an hemispherical shell of thickness 
  

1

2
a , that emits 

radiation as a black-body at a constant temperature, for isotropic emission the fraction of 

radiation emitted into the meteoroid is approximately 4/9.     

 

If there is sufficient volatile material in the bolide, the majority of the energy from 

radiative heating by the shocked gas goes into sublimating more volatile gases from the 

bolide. The rise in the temperature of the bolide is strongly dependent on the composition 

of the molecules of the sublimated material forming the sheath.  

 

Assuming that the bolide is composed purely of water-ice, radiation from the bow-shock 

will be scattered by the sublimating water molecules within the sheath. For typical 

bow-shock temperatures , the wavelength of the incident UV radiation is 

, much greater than typical molecular radii ~10-10 m . Under these conditions, 

radiation interacts with the ice molecules through Rayleigh scattering ( Wickramasinghe, 

1973; van de Hulst 1981). The intensity of the radiation incident on the surface of the 
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bolide is then reduced by a factor of  

 

8p Na 2

l 4R2
1+ cos2 q( )                (12) 

 

where R is the distance between the shocked air and the surface of the bolide and N the 

number density of the sublimating molecules, approximately equal to the sublimation rate, 

 for an ice bolide at 273 K. a is the polarizability of the molecules which 

can be calculated from the complex refractive index m l( ) = n - ik  using the equation 

 

a =
m2 -1

m2 + 2

æ

èç
ö

ø÷
a3                 (13) 

 

(Wickramasinghe, 1973). Warren and Brandt (2008) have determined the real and 

imaginary optical constants for ice across the UV and IR wavelengths. Using these values 

in equation 13, the Rayleigh scattering efficiencies for a pure ice bolide are calculated and 

shown in Figure 2. The l -4dependence of the scattering efficiency implies that the effect 
of scattering is several orders of magnitude greater at the UV wavelengths than the IR. 

This implies that the sublimating molecules are more efficient at scattering incident UV 

radiation from the shocked air than IR radiation emitted by the bolide. A resulting inverse 

greenhouse effect may thus lead to lower than expected bolide temperatures. 

Absorption of incident radiation by molecules is proportional to l -1 (van de Hulst 1981), 
so that scattering is the dominant mechanism by which the intensity of incident radiation 

is reduced at UV wavelengths. 

The energy balance equation for an ice bolide is obtained by modifying Equation 9, so 

that the incident radiation spectrum is given by the Planck function . 

Integrating (12) over all incident angles  to obtain the Rayleigh scattering cross-section 

s s  gives 

  

s
s

l( ) B l, T = 10,000 K( )
l

ò dl = esT
B

4 +
Z L T

B( )
N

0

          (14) 

 

and from the results of the previous section the heat conduction term on the right hand 

side of Equation 9 can be omitted. 

 

In the absence of any sublimating material surrounding the bolide, the incident radiation 

flux in (14) can be approximated as a blackbody with the temperature equal to that of the 

bow-shock temperature ( ). 
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In this case the thermal energy from the bow-shock is balanced by a maximum 

sublimation rate of   ~1´1027 m2s-1, corresponding to a maximum bolide temperature of ~ 

500 K. The energy loss due to radiation from the bolide is significantly less than the 

sublimation losses and so the 
  
esT

B

4 term in Equations 14 and 15 can be ignored.   

   

Numerical integration of the incident radiation flux in Equation (14) using the Rayleigh 

scattering efficiencies calculated in Figure 3 gives a sublimation rate   ~ 1´1023m2s-1, 

corresponding to a maximum bolide temperature of 260 K. Hence a sublimating 1m 

radius pure ice bolide would lose < 2 % of its original mass during atmospheric descent.  

 

As the more volatile fractions of the bolide are used up, the bolide temperature rises, the 

less volatile carbonaceous material also evaporates and the capacity to generate a 

protective sheath is lost. At this point, the bow shock attaches and the bolide disintegrates 

explosively. 

 

Sublimation is very effective in cooling the infalling bolide; it also shields the bolide 

from strong pressure gradients associated with the attached bow (or limb) shock of a 

sheath-less bolide. Depletion of the surface volatiles reduces the optical depth from the 

aerosheath, consequently reducing the shielding from radiative heating. Raised surface 

temperature and attachment of the bow shock to the body may all play a part in deciding 

the final break up. The bow shock travels through the bolide with a velocity 

approximately equal to that of the bolide (~ 10 km s-1). The body is compressed by the 

shockwave and then ruptured by the reflected shock from the rear face of the bolide so 

that fragmentation occurs within   ~ 10-4 s  

 

6. Conclusion 

The classical modelling of stony and iron meteorite falls cannot explain the low altitude 

break-up of a fragile meteorite. We propose an alternative sublimation model, which 

applies to bolides with substantial fractions of water ice and organics within a low density 

matrix of porous siliceous material. The presence of a protective layer of sublimating 

material enables such fragile bodies to withstand high thermal heating rates until either 

mechanical stress or the loss of volatile material results in catastrophic failure of the 

body.  

 

If the optical thickness of the ablating material drops, heating of the body may produce 

gases from vaporisation of volatile components inside the body. Mechanical stress or 

explosion from ignition of gases may account for the disintegration process in bolides 

formed of volatile components held within an impermeable porous shell.  

Our model assumes that the sublimation pressure increases as the bolide descends 

through the Earth’s atmosphere such that the sublimation pressure ≈ ram pressure and that 

the mass lost by sublimation << than the original mass of the body. Both these 
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assumptions are validated by our calculations.   

 

The detailed transition from free molecular flow to hydrodynamic flow is a sensitive 

function of both the mean free path of the sublimated molecules and the incoming 

atmospheric gas molecules (Coulson 2006). The presence of an aerosheath is a further 

factor to be considered in determining the altitude at which meteoroids transition between 

flow regimes. 

 

We conclude by noting that the model discussed in this paper is applicable to the Maribo 

meteorite discovered in 2009 (Haack et al, 2011) and more particularly to the case of the 

Polonnaruwa stones that fell in Sri Lanka in December 2011 (Wallis, et al, 2013). The 

distribution of stable oxygen isotopes in the latter being non-terrestrial leaves little option 

but to conclude that these low-density porous fragments define a new type of meteorite 

resulting from the fragmentation of a predominantly water-ice-organic bolide of the type 

described in this paper.  
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Appendix  

 

Consider a spherical, non-ablating meteor of radius a, falling through the atmosphere 

under the influence of gravity and atmospheric drag. If the speed of the meteor v is 

written as a function of its path length through the atmosphere x, the equation of motion 

of the meteor is 

 

  
v

dv

dx
= a

2
- a

1
e

-a
0
x
v2

               (A1) 

 

with the initial conditions 
  
v = v

0
, x = x

0
; i.e. the meteor has an initial speed of 

  
v = v

0
 

in free space prior to atmospheric decent.   

 

Here  

 

  
a

0
=

cosq
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m

 

 

  
a

2
= g cosq . 

 

q  is the angle the meteor’s path makes with the downward vertical and g is the 
acceleration due to gravity. 

 

Writing 
  
f x( ) = a

1
e

-a
0
x
, the non-linear equation A1 becomes 

 

  
v

dv

dx
+ f (x)v2 = a

2
               (A2) 

 

which can be solved by means of an integrating factor 
  

1

2
e

2 f (s)dsò  to give 
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where Ei is the exponential-integral 

 

E
i

x( ) = -
e- t

t
dt

- x

¥

ò and X, X0 are the dimensionless 
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quantities 

  

X =
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m
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H
x
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Calculating values for the speed of a 1 m radius Polonnaruwa type bolide with an initial 

speed of 12 km s-1 using Equation A3 is consistent with ignoring the effects of gravity to 

within 3 decimal places for altitudes above 15 km. 
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Figure 1: Velocity profiles for 1 m radii bolides entering the Earth’s atmosphere at angle 

of 
 
p

4
to the downward vertical and an initial speed of 12 km s-1. The blue curve is for a 

bolide composed of a comet-like ice and organics with a density of 0.6 g cm-3. The red 

curve is for a higher density bolide of 0.9 g cm-3. 
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Figure 2: The variation of Rayleigh scattering efficiencies (on a log scale) with 

wavelength across the UV and IR wavelengths. Calculated from equation 12 for a 1m 

radius block of sublimating ice, with a sublimated particle number density of 

N =1´1023
, using the optical constants for ice given by Warren and Brandt (2008). 

 




