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Abstract. Galaxy structures represent one of the most challenging observations

in cosmology. Whether or not these structures are found to be compatible with

the standard model of galaxy formation crucially depends on the a-priori and

assumptions encoded in the statistical methods employed to characterize the data and

on the a-posteriori hypotheses made to interpret the results. We present strategies

to test the most common assumptions, i.e. spatial homogeneity and statistical

homogeneity and isotropy. These tests provide evidences that, in the available samples,

galaxy distribution is spatially inhomogeneous but statistically homogeneous and

isotropic. Different conclusions are obtained through statistical tools based on a-priori

assumptions that not verified in the data when directly tested. Thus we find that

the observed galaxy structures are not compatible with the standard model of galaxy

formation, e.g. LCDM, that predicts spatial homogeneity at small scales (i.e., r < 10

Mpc/h), structures of relatively limited size (i.e. r < 100 Mpc/h) and anti-correlations

at large scales (i.e. r > 150 Mpc/h). While the observed inhomogeneities pose a

fundamental challenge to the standard picture of cosmology they also represent an

important opportunity which may open new directions for many cosmological puzzles.
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1. Introduction

One of cornerstone of modern cosmology is obtained by the observations of the three

dimensional distribution of galaxies [1, 2]. In recent years there has been a fast growth

of data which has allowed a detailed characterization of galaxy structures at low redshift

(i.e., z < 0.3) and small scales (i.e., r < 150 Mpc/h) . While many authors (see e.g.,

[3, 4, 5, 6, 7, 8, 9]) have claimed that the data are compatible with the theoretical

expectations, and thus they are currently used to estimate a number of cosmological

parameters, there are some critical issues which have not received the due attention

(see e.g., [10, 11, 12, 14, 15, 16]). The critical points concern the a-priori assumptions

which are usually used, without being tested, in the statistical analysis of the data and

the a-posteriori hypotheses that are used to interpret the results. Among the former,

there are the assumptions of spatial homogeneity and of translational and rotational

invariance (i.e., statistical homogeneity) which are built in the standard estimators of

galaxy correlations [17]. While these estimators are certainly the correct ones to use

when these properties are verified, it is an open question of whether the data satisfy

these assumptions. It is indeed well known that galaxies are organized into large scale

structures, like clusters, filaments and voids, with large fluctuations [18, 19, 20, 21, 22]

and it is not obvious a-priori that spatial or statistical homogeneity are satisfied in a

sample of any size. Indeed the critical point is that the assumptions of spatial and

statistical homogeneity are encoded in the statistical methods and thus these properties

are supposed to be satisfied inside (i.e., not at larger scales) any considered sample

where these methods are employed [17].

While it is possible that at large enough scales galaxy distribution becomes spatially

uniform, this is certainly not the case at small enough scales. Thus it comes the question

of the determination of the scale beyond which spatial homogeneity is satisfied. To

investigate this problem it is necessary to use statistical methods which are able to

directly test spatial homogeneity, and that thus do not assume it a-priori. This is

precisely the reason to introduce statistical methods which more general than the usual

ones [17]. However when facing the question of testing spatial homogeneity, one has

to consider a number of subtle possibilities which may affect the determinations of

statistical quantities via volume averages [11]. In brief the central problem is the stability

of finite sample determinations: when a statistical quantity depends on the finite size

of the sample then this is not a meaningful and useful estimator of an ensemble average

property. A critical analysis of finite-sample volume averages is thus necessary to identify

the subtle effects induced by spatial inhomogeneities.

As mentioned above, there is then a second kind of ad-hoc hypotheses which are

often used in the interpretation of the statistical analysis. There are some results which

are a-priori unexpected but that, a-posteriori, are interpreted as due to some intervening

effects in the data, as for example galaxy evolution or selection effects. While it is very

well possible that such effects are present in the data, it is however necessary not to

parameterize their influence simply through the introduction of ad-hoc functions and
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parameters (see e.g. [23, 24, 4] and discussion in [11]), rather to develop focussed tests

to understand whether the additional hypotheses are supported by the actual data.

To frame the problem of the comparison of theoretical predictions with data we

focus the attention on the real space correlation properties of standard models. The

Friedmann-Robertson-Walker (FRW) geometry is derived under the assumptions that

matter distribution is exactly translational and rotational invariant [25]. This implies

that the matter density is assumed to be constant in a spatial hyper-surface. The FRW

metric describes the geometry of the universe in terms of a single function, the scale

factor, which obeys to the Friedmann equations [25]. On the top of the mean field

one can consider statistically homogeneous and isotropic small-amplitude fluctuations.

These furnish the seeds of gravitational clustering which eventually give rise to the

structures we observe in the present universe. The growth of fluctuations into non-linear

structures is considered to have a negligible effect on the space-time dynamics, which

is instead driven by the uniform mean field [26]. The statistical properties of matter

density fluctuations have to satisfy an important condition in order to be compatible

with the FRW geometry [27, 28]. In its essence, the condition is that fluctuations in

the gravitational potential induced by density fluctuations do not diverge at large scales

[29, 17]. This situation requires that the matter density field fluctuations decay in the

fastest possible way with scale [30]. Correspondingly the two-point correlation function

becomes negative at larger scales (i.e., r > 150) Mpc/h which imply the absence of larger

structures of tiny density fluctuations. Are the large scale structures and fluctuations

compatible with such a scenario [31] ?

This paper is organized as follows. In Sect.2 we briefly review the main properties of

both spatially homogeneous and inhomogeneous stochastic density fields. All definitions

are given in the ensemble sense, and for ergodic processes, in the infinite volume limit.

The main features of density fields in standard cosmological models are presented in

Sect.3, focusing the attention to real space correlation properties. In the case of a

real point distribution (Sect.4) the information that can be exacted from the data is

thorough a statistical analysis in a finite sample, and hence through the computation

of volume averages. We discuss how to set up a strategy to analyze a point distribution

in a finite volume, stressing the sequence of steps that should be considered in order to

reduce as much as possible the role of a-priori assumptions encoded in the statistical

analysis. The analysis of the galaxy data is presented in Sect.5. We discuss that galaxy

distribution, at relatively low redshifts (i.e., z < 0.3) and small scales (i.e., r < 150

Mpc/h) is characterized by large density fluctuations which correspond to large-scale

correlations. We emphasize that by using the standard statistical tools one reaches a

different conclusion. This occurs because these methods are based on several important

assumptions: some of them, when directly tested are not verified, while others are very

strong ad-hoc hypotheses which require a detailed investigation. Finally in Sect.6 we

draw our main conclusions.
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2. A brief review of the main statistical properties

In this section we review the main probabilistic properties of mass density fields. This

means that we consider ensemble averages or, for ergodic cases, volume averages in the

infinite volume limit. The probabilistic properties of a distribution are useful to be

studied in view of its statistical characterization in finite samples (see Sec.4).

A mass density field can be represented as stationary stochastic process that consists

in extracting the value of the microscopic density function ρ(~r)‡ at any point of the

space. This is completely characterized by its probability density functional P[ρ(~r)].

This functional can be interpreted as the joint probability density function (PDF)

of the random variables ρ(~r) at every point ~r. If the functional P[ρ(~r)] is invariant

under spatial translations then the stochastic process is statistically homogeneous or

translational invariant (stationary) [17]. When P[ρ(~r)] is also invariant under spatial

rotation then the density field is statistically isotropic [17].

A crucial assumption usually used, when comparing theoretical prediction to data,

is that stochastic fields are required to satisfy spatial ergodicity. Let us take a generic

observable F = F(ρ(~r1), ρ(~r2), ...) function of the mass distribution ρ(~r) at different

points in space ~r1, ~r2, ... . Ergodicity implies that 〈F〉 = F = limV→∞FV , where the

symbol 〈...〉 is for the (ensemble) average over different realizations of the stochastic

process, and FV = 1
V

∫

V FdV is the spatial average in a finite volume V [17].

2.1. Spatially homogeneous distributions

The condition of spatial homogeneity (uniformity) is satisfied if the ensemble average

density of the field ρ0 = 〈ρ〉 is strictly positive, i.e. for an ergodic stochastic field,

〈ρ〉 = lim
R→∞

1

V (R; ~x0)

∫

V (R; ~x0)
ρ(r)d3r > 0 ∀ ~x0 , (1)

where R is the linear size of a volume V with center in ~x0. It is necessary to carefully

test spatial homogeneity before applying the definitions given in this section to a finite

sample distribution (see Sect.4). Indeed, for inhomogeneous distributions the estimation

of the average density substantially differs from its asymptotic value and thus the sample

estimation of ρ0 is biased by finite size effects. Unbiased tests of spatial homogeneity

can be achieved by measuring conditional properties (see below).

A distribution is spatially inhomogeneous up to a scale λ0 if
∣

∣

∣

∣

∣

1

V (R; ~x0)

∫

V (R; ~x0)
d3xρ(~x)− ρ0

∣

∣

∣

∣

∣

< ρ0 ∀R > λ0 , ∀ ~x0 . (2)

This equation defines the homogeneity scale λ0 which separates the strongly fluctuating

regime r < λ0 from the regime where fluctuations have small amplitude relative to the

asymptotic average.

‡ We use the symbol ρ(r) for the microscopic mass density and n(r) for the microscopic number density.

However in the following sections we consider only the number density, as it is usually done in studies

of galaxy distributions. In that case we can simply replace the symbol ρ(r) with n(r) and all the

definitions given in this section remain unchanged.
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The quantity 〈ρ(~r1)ρ(~r2)〉dV1dV2 gives, in a single realization of a stochastic process,

the a-priori probability to find two particles simultaneously placed in the infinitesimal

volumes dV1, dV2 respectively around ~r1, ~r2. The quantity

〈ρ(r12)〉pdV1dV2 =
〈ρ(~r1)ρ(~r2)〉

ρ0
dV1dV2 (3)

gives the a-priori probability of finding two particles placed in the infinitesimal volumes

dV1, dV2 around ~r1 and ~r2 with the condition that the origin of the coordinates is occupied

by a particle (Eq.3 is the ratio of unconditional quantities, and thus, for the roles of

probabilities, it defines a conditional quantity) [17].

For a stationary and spatially homogeneous distribution (i.e., ρ0 > 0), we may

define the reduced two-point correlation function as

ξ(r12) =
〈ρ(r12)〉p

ρ0
− 1 =

〈ρ(r12)〉

ρ20
− 1 . (4)

This function characterizes correlation properties of density fluctuations with small

amplitude with respect to the (ensemble) average density.

Let us now discuss the information that can be extracted from ξ(r), when spatial

homogeneity has been already proved. Suppose that correlations have a finite range so

that in this case we have

ξ(r) = A exp(−r/rc) , (5)

where rc is the correlation length of the distribution and A is a constant. Structures of

fluctuations have a size determined by rc. This length scale depends only on the rate of

decay of the correlation function. Another characteristic length scale can be defined as

ξ(r0) = 1; from Eq.5 we find

r0 = rc · log(A) , (6)

i.e., it depends on the amplitude A of the correlation function §. The two scales r0 and rc
have a completely distinct meaning: the former marks the crossover from large to small

fluctuations while the latter quantifies the typical size of clusters of small amplitude

fluctuations. When ξ(r) is a power-law function of separation (i.e. ξ(r) ∼ r−γ with

0 < γ < 3) then the correlation length rc is infinite and there are clusters of all sizes

[17]. (In cosmology the term correlation length is very often used to mean the scale r0
instead of rc. This is in our opinion a confusing terminology, and we use the standard

one in statistical physics defined in Eqs.5-6.)

The two-point correlation function defined by Eq.4 is simply related to the

normalized mass variance in a volume V (R) of linear size R [17]

σ2(R) =
〈M(R)2〉 − 〈M(R)〉2

〈M(R)〉2
=

1

V 2(R)

∫

V (R)
d3r1

∫

V (R)
d3r2ξ(r12) . (7)

§ When ξ(r) has a more complex behavior than Eq.5, the scale r0 is different from Eq.6 but simple to

computed from its definition, i.e. ξ(r0) = 1. However the finite range of positive correlations generally

corresponds to an exponential decay of the type of Eq.5.
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The scale r∗ at which fluctuations are of the order of the mean, i.e. σ(r∗) = 1, is

proportional to the scale r0 at which ξ(r0) = 1 and to the scale λ0 defined in Eq.2.

For spatially uniform systems, when the volume V in Eq.7 is a real space sphere‖,

it is possible to proceed to the following classification for the scaling behavior of the

normalized mass variance at large enough scales [29, 17]:

σ2(R) ∼















R−(3+n) for − 3 < n < 1

R−(3+1) logR for n = 1

R−(3+1) for n > 1

. (8)

For −3 < n < 0 (which corresponds to ξ(r) ∼ r−γ with 0 < γ = 3 + n < 3), mass

fluctuations are “super-Poisson”, typical of systems at the critical point of a second

order phase transition [17]: there are long-range correlations and the correlation length

rc is infinite. For n = 0 fluctuations are Poisson-like and the system is called substantially

Poisson: there are no correlations (i.e., a purely Poisson distribution) or correlations

limited to small scales of the type described by Eq.5, i.e. a finite correlation length.

This behavior is typical of many common physical systems, e.g., a homogeneous gas

at thermodynamic equilibrium at sufficiently high temperature. Finally for n ≥ 1

fluctuations are “sub-Poisson” or super-homogeneous [29, 17] (or hyper-uniform [30]). In

this case σ2(R) presents the fastest possible decay for discrete or continuous distributions

[29] and the two-point correlation function has to satisfy a global constraint (see Sect.3).

Examples are provided, for instance, by the one component plasma, a well-known system

in statistical physics [32], and by a randomly shuffled lattice of particles [17, 33].

Note that any uniform stochastic process has to satisfy the following condition

lim
R→∞

σ2(R) = lim
R→∞

=
1

V 2(R)

∫

V (R)
d3r1

∫

V (R)
d3r2ξ(r12) = 0 (9)

which implies that the average density ρ0, in the infinite volume limit, is a well defined

concept, i.e. ρ0 > 0 [17].

2.2. Spatially inhomogeneous distributions

A distribution is spatially inhomogeneous in the ensemble (or in the infinite volume

limit) sense if λ0 → ∞. For statistically homogeneous distributions, from Eq.2, we get

that the ensemble average density is ρ0 = 0. Thus unconditional properties are not well

defined: if we randomly take a finite volume in an infinite inhomogeneous distribution,

it typically contains no points. Therefore only conditional properties are well defined,

as for instance the average conditional density defined in Eq.3.

For fractal object the average conditional mass included in a spherical volume grows

as 〈M(r)〉p ∼ rD: for D < 3, the average conditional density presents a scaling behavior

of the type

〈ρ(r)〉p =
〈M(r)〉p
V (r)

∼ rD−3 , (10)

‖ The case in which the volume is a Gaussian sphere can be misleading, see e.g. [29]
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so that limr→∞〈ρ(r)〉p = 0. The hypotheses underlying the derivation of the Central

Limit Theorem are violated by the long-range character of spatial correlations, resulting

in a PDF of fluctuations that does not follow the Gaussian function [17, 34]. Actually it

typically displays “long tails” [35] which can be associated with the divergence of some

moments of the distribution.

It is possible to introduce more complex inhomogeneous distributions than Eq.10,

for instance the multi-fractal distributions for which the scaling properties are not

described by a single exponent, but they change in different spatial locations being

characterized by a spectrum of exponents [17]. Another simple (and different !) example

is given by a distribution in which the scaling exponent in Eq.10 depends on distance,

i.e. D = D(r) < 3.

3. Statistical properties of the standard model

As discussed in the introduction, an important constraint must be valid for any kind

of initial matter density fluctuation field in the framework of FRW models. This

is represented by the condition of super-homogeneity, corresponding in cosmology

to the so-called condition of “scale-invariance” of the primordial fluctuations power

spectrum (PS)¶ [29]. To avoid confusion, note that in statistical physics the term

“scale invariance” is used to describe the class of distributions which are invariant with

respect to scale transformations. For instance, a magnetic system at the critical point

of transition between the paramagnetic and ferromagnetic phase, shows a two-point

correlation function which decays as a non-integrable power law, i.e. ξ(r) ∼ r−γ with

0 < γ < 3 (super-Poisson distribution in Eq.8). The meaning of “scale-invariance” in

the cosmological context is therefore completely different, referring to the property that

the mass variance at the horizon scale be constant (see below) [29].

3.1. Basic Properties

Matter distribution in cosmology is assumed to be a realization of a stationary stochastic

point process that is also spatially uniform. In the early universe the homogeneity scale

λ0 is of the order of the inter-particle distance, and thus negligible, while it grows during

the process of structure formation driven by gravitational clustering. The main property

of primordial density fields in the early universe is that they are super-homogeneous,

satisfying Eq.8 with n = 1. This latter property was firstly hypothesized in the seventies

[27, 28] and it subsequently gained in importance with the advent of inflationary models

in the eighties [29].

In order to discuss this property, let us recall that the initial fluctuations are taken to

have Gaussian statistics and a certain PS. Since fluctuations are Gaussian, the knowledge

of the PS gives a complete statistical description of the fluctuation field. In a FRW

¶ The PS of density fluctuations is P (~k) =
〈

|δρ(~k)|
2

〉

, where δρ(~k) is the Fourier Transform of the

normalized fluctuation field (ρ(~r)− ρ0)/ρ0 [29].
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cosmology there is a fundamental characteristic length scale, the horizon scale RH(t)

that is simply the distance light can travel from the Big Bang singularity t = 0 until any

given time t in the evolution of the Universe, and it grows linearly with time. Harrison

[27] and Zeldovich [28] introduced the criterion that matter fluctuations have to satisfy

on large enough scales. This is named the Harrison-Zeldovich criterion (H-Z); it can be

written as

σ2(R = RH(t)) = constant. (11)

This condition states that the mass variance at the horizon scale is constant: it can be

expressed more conveniently in terms of the PS for which Eq.11 is equivalent to assume

P (k) ∼ k (the H-Z PS) and that in a spatial hyper-surface σ2(R) ∼ R−4 [29, 17].

3.2. Physical implications of super-homogeneity

In order to illustrate the physical implications of the H-Z condition, one may consider the

gravitational potential fluctuations δφ(~r), which are linked to the density fluctuations

δρ(~r) via the gravitational Poisson equation: ∇2δφ(~r) = 4πGδρ(~r) . From this,

transformed to Fourier space, it follows that the PS of the potential Pφ(k) =
〈

|δφ̂(~k)|2
〉

is related to the density PS P (k) through the equation Pφ(k) ∼
P (k)
k4

. The H-Z condition,

P (k) ∼ k, corresponds therefore to Pφ(k) ∝ k−3, so that the variance of the gravitational

potential fluctuations, σ2
φ(R) ≈ 1

2
Pφ(k)k

3|k=R−1, is constant with k [29].

The H-Z condition is a consistency constraint in the framework of FRW cosmology.

Indeed, the FRW is a cosmological solution for a perfectly homogeneous Universe, about

which fluctuations represent inhomogeneous perturbations. If density fluctuations obey

to a different condition than Eq.11, and thus n < 1 in Eq.8, then the FRW description

will always break down in the past or future, as the amplitude of the perturbations

become arbitrarily large or small. Thus the super-homogeneous nature of primordial

density field is a fundamental property independently on the nature of dark matter.

This is a very strong condition to impose, and it excludes even Poisson processes (n = 0

in Eq.8) [29] for which the fluctuations in gravitational potential diverge at large scales.

3.3. The small scales behavior

Various models of primordial density fields differ for the behavior of the PS at large wave-

lengths depending on the specific properties hypothesized of the dark matter component.

For example, in the Cold Dark Matter (CDM) scenario, where elementary non-baryonic

dark matter particles have a small velocity dispersion, the PS decays as a power law

P (k) ∼ k−2 at large k. For Hot Dark Matter (HDM) models, where the velocity

dispersion is large, the PS presents an exponential decay at large k. However at small

k they both exhibit the H-Z tail P (k) ∼ k which is indeed the common feature of all

density fluctuations compatible with FRW models. The scale rc ≈ k−1
c at which the PS

shows the turnover from the linear to the decaying behavior is fixed to be the size of

the horizon at the time of equality between matter and radiation [41].
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3.4. The two-point correlation function and super-homogeneity

The super-homogeneity (or H-Z) condition corresponds to the following limit condition
∫

∞

0
d3rξ(r) = 0 , (12)

which is another way to reformulate the condition that limk→0 P (k) = 0. This means

that there is a fine tuned balance between small-scale positive correlations and large-

scale negative anti-correlations [29, 17]. Note that Eq.12 is different, and much stronger,

from the requirement that any uniform stochastic process has to satisfy, i.e. Eq.9 [17].

In terms of correlation function ξ(r) CDM/HDM models present the following behavior:

it is positive at small scales (decaying as ξ(r) ∼ r−1 for CDM and being almost flat for

HDM), it crosses zero at rc and then it is negative approaching zero with a tail which

goes as −r−4 (in the region corresponding to P (k) ∼ k) [17].

3.5. Baryonic acoustic oscillations

To conclude let us mention the baryon acoustic oscillations (BAO) scale [36]. The

physical description which gives rise to these oscillations is based on fluid mechanics

and gravity: when the temperature of the plasma was hotter than ∼ 103 K, photons

were hot enough to ionize hydrogen so that baryons and photons can be described as a

single fluid. Gravity attracts and compresses this fluid into the potential wells associated

with the local density fluctuations. Photon pressure resists this compression and sets

up acoustic oscillations in the fluid. Regions that have reached maximal compression

by recombination become hotter and hence are now visible as local positive anisotropies

in the cosmic microwave background radiation (CMBR), if the different k−modes are

assumed to have the same phase.

For our discussion, the principal point to note is that while k−oscillations are de-

localized, in real space the correlation function shows a characteristic feature: ξ(r) has

a localized feature at the scale rbao corresponding to the frequency of oscillations in k

space. This simply reflects that the Fourier Transform of a regularly oscillating function

is a localized function. Formally the scale rbao corresponds to a scale where a derivative

of ξ(r) is not continuous [17, 37].

3.6. Size of structures and characteristic scales

There are thus three characteristic scales in the LCDM-type models (see Fig.1). The

first is the homogeneity scale which depends on time λ0 = λ0(t), the second is the

scale rc where ξ(rc) = 0 (that roughly corresponds to the scale defined in Eq.5) which

is fixed by the initial properties of the matter density field as well as the third scale

rbao. As long as the homogeneity scale is smaller than rbao, rc, these two scales are

substantially unchanged by gravitational dynamics: at those scales this is in the linear

regime as fluctuations have a small enough amplitude, and it linearly amplifies the initial

fluctuations spectrum. The rate of growth of the homogeneity scale can be simply
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Figure 1. Schematic behavior of the two-point correlation function for the LCDM

case. At small scales r < r0 ≈ 10 Mpc/h (where ξ(r0) = 1) non-linear gravitational

clustering has changed the initial shape of ξ(r). At larger scales ξ(r) has been only

amplified by gravitational clustering in the linear regime. For 10 < r < rc ≈ 120

Mpc/h the correlation is positive and with small amplitude. At larger scales it is

negative and characterized by the ξ(r) ∼ −r−4 behavior. The location of rbao is fixed

by cosmological parameters: in the example shown rbao < rc as predicted by the

“concordance model” [3].

computed by using the linear perturbation analysis of a self-gravitating fluid in an

expanding universe [26]. Given the initial amplitude of fluctuations and the assumed

initial PS of matter density fluctuations, it results that λ0(tnow) ≈ 10 Mpc/h [38].

From the characterization of the two-point correlation function of galaxy

distribution we can identify three fundamental tests of standard models +:

• If the homogeneity scale λ0 is much larger (i.e., a factor 5-10) than ∼ 10 Mpc/h,

then there is not enough time to form non-linear structures in LCDM models [11].

• If the correlation length rc (i.e., the zero point of ξ(r)) is much larger than ∼ 100

Mpc/h then there is a problem in the description of the early universe physics.

• The clear test of inflationary models is given by the detection of the negative part

of the correlation function, i.e. the range of scales it behaves as ξ(r) ∼ −r−4: all

models necessarily predict such a behavior ∗.

+ For the power-spectrum there are additional complications, related how galaxies are biased with

respect to the underlying density field: see [39, 31, 40] for further details.
∗ In the same range of scales the PS is expected to be linear with the wave-number, i.e. P (k) ∼ k.

However selection effects may change the behavior of the PS to constant but not the functional behavior
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4. Testing assumptions in the statistical methods

A number of different statistics, determined by making a volume average in a finite

sample, can be used to characterize a given distribution. In addition, each statistical

quantity can be measured by using different estimators. For this reason we have to set

up a strategy to attack the problem if we do not know a-priori which are the properties

of the given finite sample distribution. To approach the problem we have to reduce as

much as possible the number of a-priori assumptions used the statistical methods, to

get the correct information from the data.

We limit our discussion to the case of interest, i.e. a set of N point particles (i.e.

galaxies) in a volume V . The microscopic number density can be simply written as

n(~r) =
∑N

i δ3(~r− ~ri) , where δ
3(~r) is the Dirac delta function. The statistical quantities

defined in Sect.2 can be rewritten in terms of the stochastic variable

Ni(V ) =
∫

V (~yi)
d3xn(~x) , (13)

where ~yi identifies the coordinates of the center of the volume V . If the center ~yi coincides

with a point particle position ~ri, then Eq.13 is a conditional quantity. Instead, if the

center ~yi can be any point of space (occupied or not by a particle) then the statistics

in Eq.13 is unconditional and it is useful to compute, for instance, the mass variance

defined in Eq.7.

For inhomogeneous distributions, unconditional properties are ill-defined (Sect.2)

and thus we firstly analyze conditional quantities to then pass, only when in which

spatial homogeneity has been detected inside the given sample, to unconditional ones.

Therefore, in what follows we take in Eq.13 as volume V a sphere of radius r with center

in a distribution point particle, i.e. we consider the stochastic variable defined by the

number of points in a sphere ♯ of radius r centered on the ith point of the given set, i.e.

V = V (r; ~ri). The PDF P (N(r)) = P (N ; r) of the variable Ni(r) (at fixed r) contains,

in principle, information about moments of any order [42]. The first moment is the

average conditional density and the second moment is the conditional variance [11].

However before considering the moments of the PDF we should study whether they

represent statistically meaningful estimates. Indeed, in the determination of statistical

properties through volume averages, one implicitly assumes that statistical quantities

measured in different regions of the sample are stable, i.e., that fluctuations in different

sub-regions are described by the same PDF. Instead, it may occur that measurements in

different sub-regions show systematic (i.e., not statistical) differences, which depend, for

instance, on the spatial position of the specific sub-regions. In this case the considered

statistic is not statistically stationary in space and its whole-sample average value (i.e.,

any finite-sample estimation of the PDF moments) is not a meaningful descriptor.

of ξ(r) [39, 31, 40].
♯ When we take a spherical shell instead of a sphere, then we define a differential quantity instead of

an integral one.
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4.1. Self-averaging

A simple test to determine whether there are systematic finite size effects affecting the

statistical analysis in a given sample of linear size L consists in studying the PDF of

Ni(r) in sub-samples of linear size ℓ < L placed in different spatial regions of the sample

(i.e., S1, S2, ..., SN). When, at a given scale r < ℓ, P (N(r), ℓ;Si) is the same, modulo

statistical fluctuations, in the different sub-samples, i.e.,

P (N(r); ℓ;Si) ≈ P (N(r); ℓ;Sj) ∀i 6= j , (14)

it is possible to consider whole sample average quantities. When determinations of

P (N(r); ℓ;Si) in different regions Si show systematic differences, then whole sample

average quantities are ill defined. In general, this situation may occur because: (i)

the lack of the property of translational invariance or (ii) the breaking of the property

of self-averaging due to finite-size effects induced by large-scale structures/voids (i.e.,

long-range correlated fluctuations).

While the breaking of translational invariance imply the lack of self-averaging

property the reverse is not true. For instance suppose that the distribution is spherically

symmetric, with origin at r∗ and characterized by a smooth density profile, function of

the distance from r∗ [15]. The average density in a certain volume V , depends on the

distance of it from r∗: there is thus a systematic effect and Eq.14 is not satisfied. On

the other hand when a finite sample distribution is dominated by a single or by a few

structures then, even though it is translational invariant in the infinite volume limit, a

statistical quantity characterizing its properties in a finite sample can be substantially

affected by finite size fluctuations. For instance, a systematic effect is present when

the average (conditional) density largely differs when it is measured into two disjointed

volumes placed at different distances from the relevant structures (i.e., fluctuations) in

the sample. In a finite sample, if structures are large enough, the measurements may

differ much more than a statistical scattering ††. That systematic effect sometimes is

refereed to as cosmic variance [22] but that is more appropriately defined as breaking

of self-averaging properties [11], as the concept of variance (which involves already

the computation of an average quantity) maybe without statistical meaning in the

circumstances described above [11]. In general, in the range of scales in which statistical

quantities give sample-dependent results, then they do not represent fair estimations of

asymptotic properties of the given distribution [11].

4.2. Spatial homogeneity

The self-averaging test (Eq.14) is the first one to understand whether a distribution is

spatially homogeneous or not inside a given sample. As long as the PDF P (N, r) does

not satisfy Eq.14 then the distribution is not only spatially inhomogeneous, but the

moments of the PDF are not useful estimators of the underlying statistical properties.

††The determination of statistical errors in a finite volume is also biased by finite size effects [31, 16]
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Suppose that Eq.14 is found to be satisfied up to given scale r < L. Now we can ask

the question: is spatial homogeneity reached for r < L?

As mentioned in Sect.2, to this aim it is necessary to employ statistical quantities

that do not require the assumption of spatial homogeneity such as conditional ones

[17, 11]. Particularly the first moment of P (N, r) provides an estimation of the average

conditional density defined in Eq.3, which can be simply written as

n(r)p =
1

M(r)

M(r)
∑

i=1

Ni(r)

V (r)
=

1

M(r)

M(r)
∑

i=1

ni(r) . (15)

We recall that Ni(r) gives the number of points in a sphere of radius r centered on the

ith point and the sum is extended to the all M(r) points contained in the sample for

which the sphere of radius r is fully enclosed in the sample volume (this quantity is r

dependent because of geometrical constraints, see, e.g., [11]). Analogously to Eq.15 the

estimator of the conditional variance can be written as

σ2
p(r) =

1

M(r)

M(r)
∑

i=1

n2
i (r)− n(r)p

2
. (16)

When, at the scales < r, self-averaging properties are satisfied, one may study the

scaling properties of n(r)p and of σ2
p(r). As long as n(r)p presents a scaling behavior as

a function of spatial separation r, as in Eq.10 with D < 3, the distribution is spatially

inhomogeneous. When n(r)p ≈ const. then this constant provides an estimation of the

ensemble average density and the scale λ0 where the transition to a constant behavior

occurs, marks the homogeneity scale. Only in this latter situation it is possible to study

the correlation properties of weak amplitude fluctuations. This can be achieved by

considering the function ξ(r) defined in Eq.4.

4.3. The two-point correlation function

Before proceeding, let us clarify some general properties of a generic statistical estimator

which are particularly relevant for the two-point correlation function ξ(r). As mentioned

above, in a finite sample of volume V we are only able to compute a statistical estimator

XV of an ensemble average quantity 〈X〉. The estimator is valid if

lim
V→∞

XV = 〈X〉 . (17)

If the ensemble average of the finite volume estimator satisfies

〈XV 〉 = 〈X〉 (18)

the estimator is unbiased. When Eq.18 is not satisfied then there is a systematic offset

which has to be carefully considered. Note that the violation of Eq.14 implies that

Eq.18 is not valid as well. Finally the variance of an estimator is σX
V = 〈XV

2
〉 − 〈XV 〉

2.

The results given by an estimator must be discussed carefully considering its bias

and its variance in any finite sample. A strategy to understand what is the effect

of these features consists in changing the sample volume V and study finite size effects

[17, 31, 11]. This is crucially important for the two-point correlation function ξ(r) as
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any estimator ξ(r) of it is generally biased, i.e. it does not satisfy Eq.18 [31, 43]. This is

because the estimation of the sample mean density is biased when correlations extend

over the whole sample size. Indeed, the most common estimator of the average density

is

n =
N

V
, (19)

where N is the number of points in a sample of volume V . It is simple to show that its

ensemble average value can be written as [31]

〈n〉 = 〈n〉
(

1 +
1

V

∫

V
d3rξ(r)

)

. (20)

Therefore only when ξ(r) = 0 (i.e., for a Poisson distribution), Eq.19 is an unbiased

estimator of the ensemble average density: otherwise the bias is determined by the

integral of the ensemble average correlation function over the volume V .

The most simple estimator of ξ(r) is the Full-Shell (FS) estimator [31] that can be

simply written, by following the definition given in Eq.4, as

ξ(r) =
(n(r))p

n
− 1 , (21)

where (n(r))p is the estimator of the conditional density in spherical shells rather than

in spheres as for the case of Eq.15. Suppose that in a spherical sample of radius Rs, to

estimate the sample density, instead of Eq.19, we use the estimator

n =
3

4πR3
s

∫ Rs

0
(n(r))p4πr

2dr . (22)

Then, the estimator defined by Eq.21 must satisfies the following integral constraint
∫ Rs

0
ξ(r)r2dr = 0 . (23)

This condition is satisfied independently of the functional shape of the underlying

correlation function ξ(r). Thus the integral constraint for the FS estimator does not

simply introduce an offset, but it causes a change in the shape of ξ(r) for r → Rs .

Other choices of the sample density estimator [31, 43] and/or of the correlation function

introduce distortions similar to that in Eq.23.

In order to clarify the effect of the integral constraint for the FS estimator, let us

rewrite the ensemble average value of the FS estimator (i.e., Eq.21) in terms of the

ensemble average two-point correlation function

〈ξ(r)〉 =
1 + ξ(r)

1 + 3
R3

s

∫Rs

0 ξ(r)r2dr
− 1 . (24)

By writing Eq.24 we assume that the stochastic noise is negligible, which of course is

not a good approximation at any scale. However in this way we may be able to single

out the effect of the integral constraint for the FS estimator. From Eq.24 it is clear that

this estimator is biased, as it does not satisfy Eq.18 but only Eq.17.

As an illustrative example, let us now consider the case in which the theoretical

ξ(r) is a given by LCDM model. The (ensemble average) estimator given by Eq.24,
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Figure 2. Absolute value of the estimation of the correlation function of the LCDM

model with the integral constraint described by Eq.24. The tick solid line represents

the theoretical model (From [31]). The zero crossing scale correspond to the cusp.

in spherical samples of different radius Rs, is shown in Fig.2. One may notice that

for Rs > rc the zero point of ξ(r) remains stable, while when Rs < rc it is linearly

dependent on Rs. The negative tail continues to be non-linearly distorted even when

Rs > rc. For instance, when Rs ≈ 600 Mpc/h we are not able to detect the ξ(r) ∼ −r−4

tail that becomes marginally visible only when Rs > 1000 Mpc/h. Thus the stability of

the zero-point crossing scale should be the first problem to be considered in the analysis

of ξ(r).

5. Results in the data

We briefly review the main results obtained by analyzing several samples of the Sloan

Digital Sky Survey (SDSS) [10, 12, 11, 34, 15] and of the Two degree field Galaxy

Redshift Survey (2dFGRS) [44, 13, 14]. For the different catalogs we selected, in the

angular coordinates, a sky region such that (i) it does not overlap with the irregular

edges of the survey mask and (ii) it covers a contiguous sky area. We computed the

metric distance R(z; Ωm,ΩΛ) from the redshift z by using the cosmological parameters

Ωm = 0.25 and ΩΛ = 0.75.

The SDSS catalog includes two different galaxy samples constructing by using

different selection criteria: the main-galaxy (MG) sample and the Luminous Red Galaxy

(LRG) sample. In particular, the MG sample is a flux limited catalog with apparent

magnitude mr < 17.77 [45], while the LRG sample was constructed to be volume-limited
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(VL) [46]. A sample is flux limited when it contains all galaxies brighter than a certain

apparent flux fmin. There is an obvious selection effect in that it contains intrinsically

faint objects only when these are located relatively close to the observer, while it contains

intrinsically bright galaxies located in wide range of distances [6]. For this reason one

constructs a volume limited (VL) sample by imposing a cut in absolute luminosity Lmin

and by computing the corresponding cut in distance rmax ≈
√

Lmin/(4πfmin), so that all

galaxies with L > Lmin, located at distances r < rmax, have flux f > fmin, and are thus

included in the sample. By choosing different cuts in absolute luminosity one obtains

several VL samples (with different Lmin, rmax). Note that we use magnitudes instead

of luminosities and that the absolute magnitude must be computed from the redshift

by taking into account both the assumptions on the cosmology (i.e. the cosmological

parameters, which very weakly perturb the final results given that the redshifts are low,

i.e. z < 0.2) and the K-corrections (which are measured in the SDSS case).

For the MG sample we used standard K-corrections from the VAGC data [47]: we

have tested that our main results do not depend significantly on K-corrections and/or

evolutionary corrections [11]. The MG sample angular region we consider is limited, in

the SDSS internal angular coordinates, by −33.5◦ ≤ η ≤ 36.0◦ and −48.0◦ ≤ λ ≤ 51.5◦:

the resulting solid angle is Ω = 1.85 sr. For the LRG sample, we exclude redshifts

z > 0.36 and z < 0.16 (where the catalog is known to be not complete [45, 4]), so that

the distance limits are: Rmin = 465 Mpc/h and Rmax = 1002 Mpc/h. The limits in R.A

α and Dec. δ considered are: α ∈ [130◦, 240◦] and δ ∈ [0◦, 50◦]. The absolute magnitude

is constrained in the range M ∈ [−23.2,−21.2]. With these limits we find N = 41833

galaxies covering a solid angle Ω = 1.471 sr [48]. Finally for 2dFGRS, to avoid the effect

of the irregular edges of the survey we selected two rectangular regions whose limits

are [14]: in southern galactic cap (SGC) (−33◦ < δ < −24◦, −32◦ < α < 52◦), and in

northern galactic cap (NGC) (−4◦ < δ < 2◦, 150◦ < α < 210◦); we determined absolute

magnitudes M using K-corrections from [49, 14].

5.1. Redshift selection function

In order to have a simple picture of the redshift distribution in a magnitude limited

sample, we report Fig.3 galaxy counts as a function of the radial distance, in bins of

thickness 10 Mpc/h, in the northern and southern part of the 2dFGRS [14, 13]. One

may notice that a sequence of structures and voids is clearly visible, but there is an

overall trend (a rise, a peak and then a decrease of the density) which is determined

by a luminosity selection effect. Indeed, n(R) in a flux limited sample is usually called

redshift selection function, as it is determined by both the redshift distribution and

by the luminosity selection criteria of the survey. It is thus not easy, by this kind of

analysis, to determine, even at a first approximation, the main properties of the galaxy

distributions in the samples. Nevertheless, one may readily compute that there is a

∼ 30% of difference in the sample density between the northern and the southern part

of the catalog: one needs to refine the analysis to clarify its significance. Note that
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Figure 3. Radial density in bins of thickness 10 Mpc/h in the northern (NGC)

and souther (SGC) part of the 2dFGRS magnitude limited sample. There is a large

structure at ∼ 240 Mpc/h. In the inset panel it is shown the distribution of Ni(r;R)

for r = 10Mpc/h in a VL sample in the NGC. (Adapted from [14]).

large scale ∼ 30% fluctuations are not uncommon. For instance, fluctuations have been

found in galaxy redshift and magnitude counts that are close to 50% occurring on ∼ 100

Mpc/h scales [18, 19, 20, 21].

5.2. Radial counts

A more direct information about the value of the density in a VL sample, is provided

by the number counts of galaxies as a function of radial distance n(R) in a VL sample.

For a spatially homogeneous distribution n(R) should be constant while, for a fractal

distribution it should exhibit a power-law decay, even though large fluctuations are

expected to occur given that this not an average quantity [50].

In the SDSS MG VL samples, at small enough scales, n(R) (see Fig.4) shows a

fluctuating behavior with peaks corresponding to the main structures in the galaxy

distribution [11]. At larger scales n(R) increases by a factor 3 from R ≈ 300 Mpc/h

to R ≈ 600 Mpc/h. Thus there is no range of scales where one may approximate n(R)

with a constant behavior. The open question is whether the growth of n(R) for R > 300

Mpc/h is induced by structures or it is caused by a selection effect in data. Both are

possible but both must be very detailed discussed. For instance in [24] it is argued that

a substantial evolution causes that growth, while in [11] it is discussed, by making a

more complete analysis (see next section), that structures certainly contribute to such
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Note the amplitude of n(R) for the MG VL samples has been normalized by taking

into account the different selection in luminosity in the different samples (From [11]).

Right Panel: The same for the LRG sample and for a mock sample extracted from the

Horizon simulations [51] (units are in (Mpc/h)−3). The blue dashed line decays as r−1

and it is plotted as reference. (From [48]).

a behavior. (Note that in mock catalogs drawn from cosmological N-body simulations

one measures an almost constant density [11, 14]).

Given that, by construction, also the LRG sample should be VL [52, 7, 4] the

behavior of n(R) is expected to be constant if galaxy distribution is close to uniform

(up to Poisson noise and radial clustering). It is instead observed that the LRG sample

n(R) shows an irregular and not constant behavior (see the right panel of Fig.4) rather

different from that seen in the MG sample. Indeed, there are two main features: (i) a

negative slope between 400 Mpc/h < r < 800 Mpc/h (i.e., 0.16 < z < 0.28) and (ii)

a positive slope up to a local peak at r ∼ 950 Mpc/h (i.e., z ∼ 0.34). Note that if

n(R) were constant we would expect a behavior similar to the one shown by the mock

sample extracted from the Horizon simulation [51] with the same geometry of the real

LRG sample (see Fig.4) [48].

An explanation that it is usually given for this result [7, 4], is that the LRG sample

is “quasi” VL, in that it does not show a constant n(R). Thus, the features in n(R)

are absorbed in the properties of a selection function, which is unknown a priori, but

that it is defined a posteriori as the difference between an almost constant n(R) and the

behavior observed. This explanation is unsatisfactory as it is given a posteriori and no

independent tests have been provided to corroborate the hypothesis that an important

observational selection effect occurs in the data, other than the behavior of n(R) itself.

A different possibility is that the behavior of n(R) is determined, at least partially, by

intrinsic fluctuations in the distribution of galaxies and not by selection effects.

By addressing the behavior of n(R) to unknown selection effects, it is implicitly

assumed that more than the 20% of the total galaxies have not be measured for

observational problems [48]. This looks improbable [52] although a more careful

investigation of the problem must be addressed. Note also that the deficit of galaxies
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would not be explained by a smooth redshift-dependent effect, rather the selection must

be strongly redshift dependent as the behavior of n(R) is not monotonic. These facts

point, but do not proof, toward an origin of the n(R) behavior due to the intrinsic

fluctuations in the galaxy distribution.

5.3. Test on self-averaging properties

Galaxy counts provide only a rough analysis of fluctuations, especially because one is

unable to average it and because it samples different scales differently as the volume

in the different redshift bins is not the same. The analysis of the stochastic variable

represented by the number of points in spheres Ni(r) an help to overcome these problems,

as it is possible to construct volume averages and because it is computed in a simple

real sphere sphere. (See an example in the inset panel of Fig.3).

Let us thus pass to the self-averaging test described in Sect.4.1. To this aim we

divide the sample into two non-overlapping regions of equal volume, one at low (L) and

the other at high (H) redshifts. We then measure the PDF PL(N ; r) and PH(N ; r) in

the two volumes. Given that the number of independent points is not very large at

large scales (i.e., M(r) in Eq.15 not very larger than ∼ 104), in order to improve the

statistics especially for large sphere radii, we allow a partial overlapping between the

two sub-samples, so that galaxies in the L (H) sub-sample count also galaxies in the

H (L) sub-sample. This overlapping clearly can only smooth out differences between

PL(N ; r) and PH(N ; r).

We first consider two SDSS MG VL samples from the data release 6 (DR6) [11]

and then from the DR7 [15]. In a first case (upper - left panels of Fig.5), at small

scales (r = 10 Mpc/h), the distribution is self-averaging (i.e., the PDF is statistically

the same) both in the DR6 sample (that covers a solid angle ΩDR6 = 0.94 sr) than

in the DR7 sample (ΩDR7 = 1.85 sr ≈ 2 × ΩDR6 sr). Instead, for larger sphere radii

i.e., r = 80 Mpc/h, (bottom - right panels of Fig.5) in the DR6 sample, the two PDF

show clearly a systematic difference. Not only the peaks do not coincide, but the overall

shape of the PDF is not smooth displaying a different shape. Instead, for the sample

extracted from DR7, the two determinations of the PDF are in good agreement (within

statistical fluctuations). We conclude that in DR6 for r = 80 Mpc/h there are large

density fluctuations which are not self-averaging because of the limited sample volume

[11, 15]. They are instead self-averaging in DR7 because the volume is increased by a

factor two.

For the other sample we consider, which include mainly bright galaxies, the breaking

of self-averaging properties does not occur as well for small r but it is found for large r.

Other radial distance-dependent selections, like galaxy evolution [24], could in principle

give an effect in the same direction if they increase the number density with redshift.

However this would not affect the conclusion that, on large enough scales, self-averaging

is broken. Note that in the SDSS samples for small values of r the PDF is found to be

statistically stable in different sub-regions of a given sample. For this reason we do not
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Figure 5. Upper Panels: PDF of the counts in spheres in the sample defined by

R ∈ [125, 400] Mpc/h and M ∈ [−20.5,−22.2] in the DR6 and DR7 data, for two

different values of the sphere radii r = 10 Mpc/h and r = 80 Mpc/h. Lower Panels:

The same but for the sample defined by R ∈ [200, 600] Mpc/h and M ∈ [−21.6,−22.8]

and for r = 20, 120 Mpc/h. (Adapted from [15]).
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Figure 6. Upper Left Panel: PDF for r = 50 Mpc/h in the LRG sample (From

[48]). The number of points contributing to the histogram is respectively for L and

H M(r) = 13277, 13099. Upper Right Panel: The same for r = 100 Mpc/h. Here

M(r) = 7929, 7690. Bottom Left Panel: The same for r = 150 Mpc/h. Here

M(r) = 3495, 3150. Bottom Right Panel: The same for r = 200 Mpc/h. Here

M(r) = 1465, 1354.

interpret the lack of self-averaging properties as due to a “local hole” around us: this

would affect all samples and all scales, which is indeed not the case [15]. Because of these

large fluctuations in the galaxy density field, self-averaging properties are well-defined

only in a limited range of scales where it is then statistically meaningful to measure

whole-sample average quantities [11, 34, 15].

For the LRG sample (see Fig.6) one may note that for r = 50 Mpc/h the two

determinations are much closer than for lager sphere radii for which there is actually a

noticeable difference in the whole shape of the PDF. The fact that PH(N ; r) is shifted

toward smaller values than PL(N ; r) is related to the decaying behavior of the redshift

counts (see Fig.4): most of the galaxies at low redshifts see a relatively larger local

density than the galaxies at higher redshift.

Due the breaking of self-averaging properties in the different samples for r < 150

Mpc/h we conclude that there is no evidence for a crossover to spatial uniformity. In

the next section we refine the analysis for smaller scales by characterizing the shape of

the PDF and the scaling of its moments.

5.4. Probability density function and its moments

In the range of scales in which self-averaging properties are found to hold, we can further

characterize the shape of the PDF and the scaling of its moments. We first computed the

average conditional density (Eq.15) finding a pronounced r dependence, as can be seen



Inhomogeneities in the universe 22

10 100
 r (Mpc/h)

3.4e-03

5.1e-03

7.7e-03
n(

r)

10 100

0.011  r
-0.29

0.0133/ln(r)

10
-1

10
0

10
1

10
2

r (Mpc/h)

10
-2

10
-1

n(
r)

r
-0.9

10
0

10
1

10
2

r (Mpc/h)

10
-7

10
-6

10
-5

10
-4

10
-3

σ2 (r
)

0.007 r
-2.4

Figure 7. Left Panel: Conditional average density n(r) of galaxies as a function of

radius. In the inset panel it is shown the behavior of in the full range of scales. Note

the change of slope at ≈ 20 Mpc/h and note also that there is no flattening up to

≈ 80 Mpc/h. The statistical significance of the last few points at the largest scales

is weaker (see text). Our conjecture is that we have a logarithmic correction to the

constant behavior, although we cannot exclude the possibility that it is power law with

an exponent ≈ −0.3 Right Panel: Variance σ2 of the conditional density ni(r) as a

function of radius. Conversely, the variance for a Poisson point process would display

a 1/r3 decay.

in Fig.7. We detect a change of slope in the conditional average density in terms of the

radius r at about ≈ 20 Mpc/h. At this point the decay of the density changes from an

inverse linear decay to a slow logarithmic one. Our best fit is n(r) ≈ 0.0133
log r

, that is the

average density depends only weakly on r. Alternatively, an almost indistinguishable

power-law fit is provided by n(r) ≈ 0.011 × r−0.29 . Moreover, the density n(r) does

not saturate to a constant up to ∼ 80 Mpc/h, i.e., up to the largest scales probed in

this sample where self-averaging properties have been tested to hold. Our best fit for

the variance is ( σ2(r) ≈ 0.007 × r−2.4 see right panel of Fig.7). Given the scaling

behavior of the conditional density and variance, we conclude that galaxy structures are

characterized by non-trivial correlations for scales up to r ≈ 80 Mpc/h.

To probe the whole distribution of the conditional density ni(r), we fitted the

measured PDF with Gumbel distribution via its two parameters α and β [34]. The

Gumbel distribution is one of the three extreme value distribution [53, 54]. It describes

the distribution of the largest values of a random variable from a density function with

faster than algebraic (say exponential) decay. The Gumbel distribution’s PDF is given

by

P (y) =
1

β
exp

[

−
y − α

β
− exp

(

−
y − α

β

)]

. (25)

With the scaling variable

x =
y − α

β
(26)

the density function (Eq.25) simplifies to the parameter-free Gumbel

P (x) = e−x−e−x

. (27)



Inhomogeneities in the universe 23

-2 0 2 4 6 8
x

0.1

0.2

0.3

0.4
 P

(x
)

-2 0 2 4 6 8
x

10
-3

10
-2

10
-1

 P
(x

)

-2 -1 0 1 2 3 4 5 6
x

0.1

0.2

0.3

0.4

0.5

P
(x

)

r=10
r=20
r=30
r=40
r=50
r=60
r=70
r=80

Figure 8. Left Panel: One of the best fits is obtained for r = 20 Mpc/h. The

data is rescaled by the fitted parameters α and β. The solid line corresponds to the

parameter-less Gumbel distribution Eq.27. The inset depicts the same on log-linear

scale. Right Panel: Data curves of different r scaled together by fitting parameters α

and β for each curves. The solid line is the parameter-free Gumbel distribution Eq.27.

The mean and the variance of the Gumbel distribution (Eq.25) is µ = α + γβ, σ2 =

(βπ)2/6 where γ = 0.5772 . . . is the Euler constant.

One of our best fit for the PDF is obtained for r = 20 Mpc/h (see left panel Fig. 8).

The data, moreover, convincingly collapses to the parameter-less Gumbel distribution

(Eq.27) for all values of r ∈ [10, 80] Mpc/h, with the use of the scaling variable x

from Eq.26 (see right panel Fig. 8). Note that for a Poisson point process the number

N(r) fluctuations are distributed exactly according to a Poisson distribution, which in

turn converges to a Gaussian distribution for large average number of points N(r) per

sphere. In our samples, N(r) was always larger than 20 galaxies, where the Poisson

and the Gaussian PDFs differ less than the uncertainty in our data. Note also that

due to the Central Limit Theorem, all homogeneous point distributions (not just the

Poisson process) lead to Gaussian fluctuations [17]. Hence the appearance of the Gumbel

distribution is a clear sign of inhomogeneity and large scale structures in our samples.

We have thus established scaling and data collapse over a wide range of radius

(volume) in galaxy data. Scaling in the data indicates criticality [17, 34]. The average

galaxy density depends only logarithmically on the radius, which suggests a Gumbel

scaling function. Indeed, it was recently conjectured [55] that only three types of

distributions appear to describe fluctuations of global observables at criticality. In

particular, when the global observable depends logarithmically on the system size, the

corresponding distribution should be a (generalized) Gumbel [34].

5.5. Two-point correlation analysis

When one determines the standard two-point correlation function one makes implicitly

the assumptions that, inside a given sample the distribution is: (i) self-averaging and

(ii) spatially uniform. The first assumption is used when one computes whole sample

average quantities. The second is employed when supposing that the estimation of the
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sample average gives a fairly good estimation of the ensemble average density. When

one of these assumptions, or both, is not verified then the interpretation of the results

given by the determinations of the standard two-point correlation function must be

reconsidered with great care.

To show how non self-averaging fluctuations inside a given sample bias the ξ(r)

analysis, we consider the estimator

ξ(r) + 1 = ξ(r;R,∆R) + 1 = n(r,∆r)p ·
V (r∗)

N(r∗;R,∆R)
, (28)

where the second ratio on the r.h.s. is now the density of points in spheres of radius r∗

averaged over the galaxies lying in a shell of thickness ∆R around the radial distance

R. If the distribution is homogeneous, i.e., r∗ > λ0, and statistically stationary, Eq.28

should be (statistically) independent on the range of radial distances (R,∆R) chosen.

The two-point correlation function is defined as a ratio between the average conditional

density and the sample average density: if both vary in the same way when the radial

distance is changed, then its amplitude remains nearly constant. This however does

not imply that the amplitude of ξ(r) is meaningful, as it can happen that the density

estimated in sub-volumes of size r∗ show large fluctuations and so the average conditional

density, and this occurring with a radial-distance dependence. To show that the ξ(r)

analysis gives a meaningful estimate of the amplitude of fluctuations, one has to test

that this amplitude remains stable by changing the relative position of the sub-volumes of

size r∗ used to estimate the average conditional density and the sample average density.

This is achieved by using the estimator in Eq.28. While standard estimators [56, 43, 31]

are not able to test for such an effect, as the main contributions for both the conditional

density and the sample average density come from the same part of the sample (typically

the far-away part where the volume is larger). We find large variations in the amplitude

of ξ(r) in the SDSS MG VL samples (see the left panel of Fig.9). This is simply an

artifact generated by the large density fluctuations on scales of the order of the sample

sizes. The results that the estimator of ξ(r) has nearly the same amplitude in different

samples, e.g., [57, 58, 59, 60, 7, 8, 9], despite the large fluctuations of Ni(r;R), are

simply explained by the fact that ξ(r) is a ratio between the average conditional density

and the sample average density: both vary in the same way when the radial distance

is changed and thus the amplitude is nearly constant. To summarize the fact that by

using different normalizations, which however are all in principle equally valid if the

distribution has a well-defined average density inside the sample, we have shown that

the amplitude of the estimated correlation function varies in the SDSS samples. This is

due to the fact that both the assumptions on which the determination of the standard

to point correlation function is based on, are not verified in these samples and that λ0

is certainly larger than the samples size.

The right panel of Fig.9 clearly show that there is a finite-size dependence of both

the amplitude of the correlation function and of the zero-crossing scale: this situations

looks like the one shown in Fig.2. Thus prior to the characterization of a fine feature

as the BAO scale, it is necessary to test that the correlation function remains stable
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Figure 9. Left panel: The two-point correlation function in a MG-VL sample

estimated by Eq.28: the sample average density is computed in spheres of radius

r∗ = 60 Mpc/h and considering all center-points lying in a bin of thickness ∆R = 50

Mpc/h centered at different radial distance R: R1 = 250 Mpc/h (n1
s) and R2 = 350

Mpc/h (n2
s). The case in which we have used the estimation of the sample average

N/V (ns) is also shown and it agrees with the FS estimator (adapted from [11]). Right

Panel: The Landy and Szalay [56] estimator of ξ(r) in various MG-VL sample and

in a LRG sample of the SDSS. The most evident feature is the finite-size dependence

of both the amplitude and the zero-crossing (adapted from [16]). The solid line is a

LCDM model.

as a function of the sample size. This shows that estimator of ξ(r) in the LRG sample

is indeed biased by volume-dependent systematic effects that make the detection of

correlations only an estimate of a lower limit of their amplitude [16]. A similar conclusion

was reached by [61], i.e. that when corrections for possible systematics are taken into

account the correlation function may not be consistent with as high amplitude a peak

as claimed by [3]. To clarify this issue, as discussed above, it is necessary to consider

the set of tests for statistical and spatial homogeneity discussed above.

Instead of investigating the origin of the fluctuating behavior of n(R), some authors

[4] focused their attention on the effect of the radial counts on the determination

of the two-point correlation function ξ(r). In particular, they proposed mainly two

different tests to study what is the effect of n(R) on the determination of ξ(r). The first

test consists in taking a mock LRG sample, constructed from a cosmological N-body

simulation of the LCDM model, and by applying a redshift selection which randomly

excludes points in such a way that the resulting distribution has the same n(R) of

the real sample. Then one can compare ξ(r) obtained in the original mock and in

redshift-sampled mock. [4] find that there is a good agreement between the two. This

shows that the particular kind of redshift-dependent random sampling considered for

the given distribution, does not alter the determination of the correlation function.

Alternatively we may conclude that, under the assumption that the observed LRG

sample is a realization of a mock LCDM simulation, the n(R) does not affect the result.

However, if we want to test whether the LRG sample has the same statistical properties

of the mock catalog, we cannot clearly proof (or disproof) this hypothesis by assuming

a priori that this is true.
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In other words, standard analyses ask directly the question of whether the data are

compatible with a given model, by considering only a few statistical measurements. As

it was shown by [5] the LRG correlation function does not pass the null hypothesis, i.e.

it are compatible with zero signal, implying that the volume of current galaxy samples

is not large enough to claim that the BAO scale is detected. In addition, by assuming

that the galaxy correlations are modeled by a LCDM model, one may find that the

data allow to constrain the position of the BAO scale. In our view this approach is too

narrow: in evaluating whether a model is consistent with the data, one should show

that at least the main statistical properties of the model are indeed consistent with the

data. As discussed above, a number of different properties can be considered, which are

useful to test the assumptions of (i) self-averaging (ii) spatial homogeneity. When, inside

the given sample, the assumption (i) and/or (ii) are/is violated then the compatibility

test of the data with a LCDM model is not consistent with the properties of the data

themselves.

6. Conclusion

The statistical characterization of galaxy structures presents a number of subtle

problems. These are associated both with the a-priori assumptions which are encoded

in the statistical methods used in the measurements and in the a-posteriori hypotheses

that are invoked to explain certain measured behaviors. By increasing the number of

the former, as for example, bias, luminosity evolution, selection effects, one may find

that the data are compatible with a certain model. However it is possible to introduce

direct tests to understand both whether the a-priori assumptions are compatible with

the data and whether it is necessary to introduce a-posteriori untested, but plausible,

hypotheses to interpret the results of the data analysis. For instance, the analysis of

the simple counts as a function of distance, in the SDSS samples, shows clearly that

the observed behavior is incompatible with model predictions. As mentioned above,

one may assume that the differences between the model and the observations are due

to selection effects. Then this becomes clearly the most important assumption in the

data analysis that must be stressed clearly and explicitly. In addition, one may consider

whether there is an independent way to study whether there are such strong selection

effects in the data.

On the basis of the series of test we have presented, aiming to directly test whether

spatial and statistical homogeneity are verified inside the available samples, extracted

both from the SDSS and 2dFGRS catalogs, we conclude that galaxy distribution is

characterized by structures of large spatial extension. Given that we are unable to find

a crossover toward homogeneity, the amplitude of these structures remain undetermined

and their main characteristic is represented by the scaling behavior of their relevant

statistical properties. In particular, we discussed that the average conditional density

presents a scaling behavior of the type ∼ r−γ with γ ≈ −1 up to ∼ 20 Mpc/h followed

by a γ ≈ −0.3 behavior up to ∼ 100 Mpc/h. Correspondingly the probability density
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function (PDF) of galaxy (conditional) counts in spheres show a relatively long tail: it

is well fitted by the Gumbel function instead than by the Gaussian function, as it is

generally expected for spatially homogeneous density fields.

Our statistical tests can thus provide direct observational tests of the basic

assumptions used in the derivation of the FRW models, i.e. spatial and statistical

homogeneity. In this respect it is worthing to clarify in more details the subtle difference

between these two concepts [15]. A widespread idea in cosmology is that the so-called

concordance model of the universe combines two fundamental assumptions. The first is

that the dynamics of space-time is determined by Einstein’s field equations. The second

is that the universe is homogeneous and isotropic. This hypothesis, usually called the

Cosmological Principle, is though to be a generalization of the Copernican Principle

that “the Earth is not in a central, specially favored position” [63, 64]. The FRW model

is derived under these two assumptions and it describes the geometry of the universe in

terms of a single function, the scale factor, which obeys to the Friedmann equation [25].

There is a subtlety in the relation between the Copernican Principle (all observes are

equivalent and there are no special points and directions) and the Cosmological Principle

(the universe is homogeneous and isotropic). Indeed, the fact that the universe looks

the same, at least in a statistical sense, in all directions and that all observers are alike

does not imply spatial homogeneity of matter distribution. It is however this latter

condition that allows us to treat, above a certain scale, the density field as a smooth

function, a fundamental hypothesis used in the derivation of the FRW metric. Thus

there are distributions which satisfy the Copernican Principle and which do not satisfy

the Cosmological Principle [17]. These are statistically homogeneous and isotropic

distributions which are also spatially inhomogeneous. Therefore the Cosmological

Principle represents a specific case, holding for spatially homogeneous distributions, of

the Copernican Principle which is, instead, much more general. Statistical and spatial

homogeneity refer to two different properties of a given density field. The problem of

whether a fluctuations field is compatible with the conditions of the absence of special

points and direction can be reformulated in terms of the properties of the PDF which

generates the stochastic field.

By analyzing the PDF in the available galaxy samples we can make tests on both

the Copernican and Cosmological Principles at low redshift, where we can neglect the

important complications of evolving observations onto a spatial surface for which we

need a specific cosmological model. We have discussed, however, that the statistical

properties of the matter density field up to a few hundreds Mpc is crucially important for

the theoretical modeling. We have shown that galaxy distribution in different samples

of the SDSS is compatible with the assumptions that this is transitionally invariant,

i.e. it satisfies the requirement of the Copernican Principle that there are no spacial

points or directions. On the other hand, we found that there are no clear evidences of

spatial homogeneity up to scales of the order of the samples sizes, i.e. ∼ 100 Mpc/h.

This implies that galaxy distribution is not compatible with the stronger assumption of

spatial homogeneity, encoded in the Cosmological Principle. In addition, at the largest
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scales probed by these samples (i.e., r ≈ 150 Mpc/h) we found evidences for the breaking

of self-averaging properties, i.e. that the distribution is not statistically homogeneous.

Forthcoming redshift surveys will allow us to clarify whether on such large scales galaxy

distribution is still inhomogeneous but statistically stationary, or whether the evidences

for the breaking of spatial translational invariance found in the SDSS samples were due

to selection effects in the data.

We note an interesting connection between spatial inhomogeneities and large

scale flows which can be hypothesized by assuming that the gravitational fluctuations

in the galaxy distribution reflect those in the whole matter distribution, and that

peculiar velocities and accelerations are simply correlated. Peculiar velocities provide

an important dynamical information as they are related to the large scale matter

distribution. By studying their local amplitudes and directions, these velocities allow us,

in principle, to probe deeper, or hidden part, of the Universe. The peculiar velocities are

indeed directly sensitive to the total matter content, through its gravitational effects, and

not only to the luminous matter distribution. However, their direct observation through

distance measurements remains a difficult task. Recently, there have been published a

growing number of observations of large-scale galaxy coherent motions which are at odds

with standard cosmological models [67, 66, 68, 69].

It is possible to consider the PDF of gravitational force fluctuations generated by

source field represented by galaxies, and test whether it converges to an asymptotic

shape within sample volumes. In several SDSS sample we find that density fluctuations

at the largest scales probed, i.e. r ≈ 100 Mpc/h, still significantly contribute to the

amplitude of the gravitational force [65]. Under the hypotheses mentioned above we

may conclude that that large-scale fluctuations in the galaxy density field can be the

source of the large scale flows recently observed.

As a final remark we mention the growing work to understand the effect of

inhomogeneities on the large scale dynamics of the universe [70, 71, 72, 64, 73, 74, 75, 76].

As long as structures are limited to small sizes, and fluctuations have low amplitude, one

can just treat fluctuations as small-amplitude perturbations to the leading order FRW

approximation. However if structures have “large enough” sizes and “high enough”

amplitudes, a perturbation approach may loose its validity and a more general treatment

of inhomogeneities needs to be developed. From the theoretical point of view, it is then

necessary to understand how to treat inhomogeneities in the framework of General

Relativity. To this aim one needs to carefully consider the information that can be

obtained from the data. At the moment it is not possible to get some statistical

information for large redshifts (z ≈ 1), but the characterization of relatively small scales

properties (i.e., r < 200 Mpc/h) is getting more and more accurate. According to FRW

models the linearity of Hubble law is a consequence of the homogeneity of the matter

distribution. Modern data show a good linear Hubble law even for nearby galaxies

(r < 10 Mpc/h). This raises the question of why the linear Hubble law is linear at

scales where the visible matter is distributed in-homogeneously. Several solution to this

apparent paradox have been proposed [72, 77, 78]: this situation shows that already
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the small scale properties of galaxy distribution have a lot to say on the theoretical

interpretation of their properties. Indeed, while observations of galaxy structures have

given an impulse to the search for more general solution of Einstein’s equations than the

Friedmann one, it is now a fascinating question whether such a more general framework

may provide a different explanation to the various effects that, within the standard FRW

model, have been interpreted as Dark Energy and Dark Matter.
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[40] Jiménez J B and Durrer R 2010 arXiv:1006.2343v1

[41] Peacock J A 1999 “Cosmological physics” (Cambridge University Press, Cambridge)

[42] Saslaw W C 2000 “The Distribution of the Galaxies” (Cambridge University Press)

[43] Kerscher M 1999 Astron.Astrophys. 343 333

[44] Vasilyev N L Baryshev Yu V and Sylos Labini F 2006 Astron.Astrophys. 447 431

[45] Strauss M A et al 2002 Astrophys.J. 124 1810

[46] Eisenstein D J et al 2001 Astrophys.J. 12 2267

[47] Blanton M R and Roweis S 2007 Astron.J. 133 734

[48] Sylos Labini F 2010 arXiv:1011.4855v1

[49] Madgwick D S et al 2002 Mon.Not.R.Acad.Soc 333 133

[50] Gabrielli A and Sylos Labini F 2001 Europhys.Lett. 54 1

[51] Kim J Park C Gott J R and Dubinski J 2009 Astrophys.J. 701 1547

[52] Eisenstein D J et al 2001 Astronom.J. 12 2267

[53] Fisher R A and Tippett L H C 1928 Cambridge Phil. Soc. 28 180

[54] Gumbel E J 1958 Statistics of Extremes (Columbia University Press)

[55] Bramwell S T 2009 Nature Physics 5 444

[56] Landy S D and Szalay A 1993 Astrophys.J. 412 64

[57] Davis M and Peebles P J E 1983 Astrophys.J. 267 465

[58] Park C Vogeley M S Geller M J and Huchra J P 1994 Astrophys.J. 431 569

[59] Benoist C Maurogordato S da Costa L N Cappi A and Schaeffer R 1996 Astrophys.J. 472 452

[60] Zehavi I et al 2002 Astrophys.J. 571 172

[61] Sawangwit U et al 2009 arXiv:0912.0511v1

[62] Mart́ınez V J et al 2009 Astrophys.J. 696 L93

[63] Bondi H 1952 Cosmology (Cambridge University Press, Cambridge)

[64] Clifton T and Ferreira P G 2009 Phys.Rev. D80 103503

[65] Sylos Labini F 2010 Astron.Astrophys. 523 A68

[66] Lavaux G Tully R B Mohayaee R and Colombi S 2010 Astrophys.J. 709 483

[67] Watkins R Feldman H A and Hudson M J 2009 Mon.Not.R.Acad.Soc. 3
¯
92 743

[68] Kashlinsky A Atrio-Barandela F Kocevski D and Ebeling, H 2008 Astrophys.J. 686 L49

[69] Kashlinsky A Atrio-Barandela F Ebeling H Edge A and Kocevski D. 2010 Astrophys.J. 712 L81

[70] Ellis G 2008 Nature 452 158

[71] Buchert T 2008 Gen.Rel.Grav. 40 467

[72] Wiltshire D L 2007 Phys.Rev.Lett. 99 251101

[73] Clarkson C and Maartens R 2010 Class. Quantum Grav. 27 124008

[74] Rasanen S 2008 Int.J.Mod.Phys D17 2543

[75] Kolb E W Marra V and Matarrese S 2010 Gen.Rel.Grav. 42 1399
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