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Abstract

The backreaction of inhomogeneities onto the global expansion of the universe suggests a possible 

link of the formation of structures to the recent accelerated expansion. In this paper, the origin of 

this  conjecture is illustrated and a model that allows a more explicit  investigation is discussed. 

Additionally to this conceptually interesting feature,  the model leads to a  ΛCDM like distance-

redshift relation that is consistent with supernova data. 

 Averaged Equations For The Expansion Of The Universe

The averaging problem
The evolution of our universe is described by Einstein's equations of General Relativity. These are 

ten coupled differential equations for the coefficients of the metric that describes our spacetime. In 

the cosmological case, where we are only interested in the overall evolution and not in the detailed 

local form of the inhomogeneous metric, cosmologists widely work with the assumption that the 

global  evolution is  described by the single homogeneous and isotropic solution of the Einstein 

Equations: They use a homogeneous isotropic fluid as the content of the universe that sources the 

evolution  of  the  homogeneous  and  isotropic  Robertson  Walker  (RW)  metric  and  therefore 

determines the lapse of the expansion. This latter is thereby condensed into the evolution of a single 

quantity, the scale factor a t  . The fundamental question, dating back to Shirokov and Fisher 

(1963) and most prominently raised by George Ellis in 1983 (Ellis (1983)), is then, if this procedure 

leads to the correct description of the global behaviour of our spacetime. Are the Einstein equations 

the correct effective equations that describe the average evolution, even if they are local equations? 



To address this question, one has to find a way to explicitly average the equations. This is necessary, 

because if one performs an average of an inhomogeneous metric whose time evolution has been 

determined by the use of the ten Einstein equations, one finds a result that differs from the classical  

case above. This is already evident from the fact that Einsteins equations are nonlinear. But already 

at the linear level, as soon as the volume element of the domain of averaging is time dependent, this 

non commutation is present. This is easy to see from a derivation of the definition of the average of  

a  scalar  quantity f , 〈 f 〉D  t  :=∫D
f  t , X  3 g t , X d 3 X /V D  t  with  respect  to  time  which 

provides ∂t 〈 f 〉D− 〈∂t f 〉D=〈 f 〉D−〈 f 〉D 〈 〉D≠0 , θ being the local expansion rate. So, if we take 

an implicitly averaged metric, i.e. the RW metric, and the effective homogeneous matter source, and 

then  calculate  its  time  evolution  with  the  standard  Friedmann  equation,  this  will  not  give  the 

average  of  the  time  evolved quantity.  Or to  put  it  short,  time evolution  and averaging do not  

commute, often strikingly written as G 〈 g 〉≠〈G g〉 and depicted in Fig. 1. 

Figure 1: Illustration of the cause of the departure of the average evolution from the standard Friedmann solutions:  

The noncommutativity of spatial averaging and time evolution. The standard Friedmannian picture is the left branch,  

where you first average the inhomogeneous matter distribution and calculate the evolution of this homogeneous soup  

by the Einstein equations. In contrast to that, in the averaged model shown by the right branch, the perturbation  

evolution is still performed with the full metric and only then, the average is taken. The two approaches give different  

results. But the main question remains: How big is this difference?



Provenance of the averaged equations
In the recent literature, the question of how big the difference between these two approaches is, has 

received growing interest, mainly due to attempts to relate it to the dark energy problem (Räsänen 

(2004), Kolb  et al. (2005)). Since then, there have been many calculations trying to quantify the 

impact  of  this  noncommutativity of  time evolution  and averaging.  The direct  way of  trying to 

average the Einstein equations in their tensorial form turned out to be very difficult, because it is not 

clear how to define a meaningful average of tensors. Therefore the most popular scheme to work 

with is still the one by Buchert (Buchert (2000) and Buchert (2001)). In this approach, one uses the 

ADM equations to perform a 3+1 split of the spacetime into spatial hypersurfaces orthogonal to the 

fluid flow. The source is also in this case often taken to be a perfect fluid and the equations take 

their simplest form in the frame of an observer comoving with the fluid. After this split one can 

identify scalar, vector and tensor parts of the resulting equations. For the scalar sector there is then a 

straightforward  definition  of  an  average  quantity  as  the  integral  of  the  scalar  function  over  a 

comoving domain of the spatial hypersurface, divided by the volume of this domain. The use of this  

definition astonishingly provides a set of two differential equations for the average scale factor of 

the averaging domain, that resembles closely the Friedmann equations in the homogeneous case:
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This is surprising, because in this approach it is not necessary to constrain the matter source to a 

completely homogeneous one, but one can have arbitrarily large spatial variations in the density.  

There are, however, two important differences between the general averaged evolution equations (1) 

and (2) for the volume scale factor and the Friedmann equations. First of all, there is one extra term 

,  which  is  called  the  kinematical  backreaction  term.  It  encodes  the  departure  of  the  matter 

distribution  in  the  spatial  hypersurface  from a  homogeneous  distribution.  This  is  because  it  is 

defined as the variance of the local expansion rate of the spacetime minus the variance of the shear 

inside the domain . Therefore, if the expansion fluctuations are bigger than the shear fluctuations, 

 is positive and contributes to the acceleration of the spatial domain (c.f. Eq. (2)). For dominating 

shear fluctuations,  is negative, and decelerates the domain's expansion. This effective term  

that emerges from the explicit averaging procedure, induces the second difference to the standard 

Friedmann equations. By the integrability condition of the equations for the average scale factor 

(Eqs. (1) and (2)),  is connected to the average internal curvature of the domain . Unlike in the 



Friedmann case,  where the curvature scales  as a D
−2 ,  the dependence of  the average curvature

〈 R 〉D on a, has not necessarily the form of a simple power law. In fact it can be shown that the 

curvature  picks  up  an  integrated  contribution  of  the  variation  of   and  evolves  in  this  way 

generically away from the flat initial conditions, expected to emerge from inflation.

Uncommon properties of the averaged model
These  two  changes  to  the  standard 

Friedmann  equations  may  alter  the 

expansion history considerably. Regarding 

Eq.  (2),  it  is  easy  to  see,  that  for

QD4G 〈ϱ 〉D there  may  even  be  an 

accelerated  epoch  of  expansion  without 

the presence of a cosmological constant. It 

may  seem  surprising  that  even  in  a 

universe only filled with a perfect fluid of 

ordinary (or dark) matter, there may be an 

effective acceleration of a spatial domain 

. This occurs, because in the calculation 

of  the  average  expansion  rate  of  ,  the 

local  expansion  is  weighted  with  its 

corresponding  volume.  Therefore,  faster 

expanding subregions of , which will by 

their  faster  growth  occupy  a  larger  and 

larger  volume  fraction  of  ,  will 

eventually dominate its expansion. Subregions that slow down their expansion, will finally only 

occupy a negligible fraction of the volume of . This means that a volume weighted average of the 

expansion rate will start with a value between the one of the slow and fast expanding regions, when 

they have still  a comparable size, but will be driven towards the value of the fastest expanding 

domain  in  the  late  time  limit.  This  growth  in  the  average  expansion  rate  corresponds  to  an 

acceleration of the growth of the volume scale factor.

Figure 2: Phase space of the solutions to the averaged equations  

Eqs.  (1)  and  (2).  The  deceleration  parameter 

qD=1/2m
D2Q

D is  in  the  present  case  of =0

effectively  a  measure  of Q
D and m

D is  the  matter  

parameter on . The point in the middle is the EdS model and the  

line r=0 encompasses the Friedmann models i.e. Q
D=0 .



A convenient  way to  illustrate  the  possible  departure  of  the  solutions  of  the  equations  for  the 

average scale  factor,  from the Friedmann solution,  is  the phase space diagram in Fig.  2.  For a 

universe without cosmological constant every path in this two dimensional plane, corresponds to a 

solution  of  the  averaged  equations.  Scaling  solutions  for  which  the  a-dependence  of  the 

kinematical backreaction  is given by a single power law a D
n , show up as straight lines. The 

Friedmann solutions lie on the line r=0 . A first phase space analysis of this parameter space in 

Buchert  et al. (2006) has shown, that the EdS model in the middle is an unstable saddle point.  

Perturbations  of  the  homogeneous  state  in  the  matter  dominated  era,  will  therefore  drive  the 

universe away from it in the direction indicated by the arrows. This is also the region in which the 

 term is positive. Therefore the instability of the Friedmann model leads naturally to accelerated 

expansion, if the phase space is traversed rapidly enough. A more elaborated phase space analysis 

may soon be found in Roy and Buchert (2011).

The important changes to the Friedmann model that emerge when passing to explicit averages, may 

be summarized in the following generalized concepts:

1. The  single  homogeneous  and  isotropic  solution  of  Einstein's  equations  is  replaced  by 

explicit averages of the equations of general relativity.

2. The  background  is  now  generically  interacting  with  the  structure  in  the  spatial 

hypersurfaces. 

3. The inhomogeneities do no longer average out on the background. 

4. The full Riemannian curvature degree of freedom is restored and the equations no longer are 

restricted to a constant curvature space. 

A more detailed review of our current understanding of the description of the average evolution 

may be found in Buchert (2008) and Räsänen (2006).

Partitioning Models

To build a specific model using the above framework there have been several attempts. As the 

equations for  a(t) are not closed, one has to impose, like in the Friedmann case, an equation of 

state for the fluid. The problem is here, that the fluid composed of backreaction   and average 

curvature 〈 R 〉D is  only an effective one.  Therefore it  is  not  clear  which equation of state  one 

should choose. In Roy and Buchert (2009) for example, the equation of state of a Chaplygin gas has 



been used. Another approach in Buchert et al. (2006) has been to take a constant equation of state 

which leads to simple scaling solutions for the  a-dependence of   and 〈 R 〉D . Those will be 

generalized here by the partitioning model, described in detail in Wiegand and Buchert (2010).

Model construction

As the name suggests, this is done by a partitioning of the background domain  into subdomains. 

To have  a  physical  intuition  about  the  evolution  of  the  subdomains,  a  reasonable  choice  is  to  

partition   into overdense - and underdense -regions.  and  regions will also obey the 

average equations (1) and (2) and there are consistency conditions, resulting from the split of the  

equations into  and  equations, that link the evolution of ,  and . The reason for the split 

is that it offers the possibility to replace the unintuitive backreaction parameter   by a quantity 

that illustrates more directly the departure from homogeneity, namely the volume fraction of the 

overdense regions λ. As explained above, λ is expected to decrease during the evolution and it is 

this decrease that drives the acceleration. The physical motivation to split into over and underdense 

regions is, that from the structure of the cosmic web, one may expect  regions, which are mainly 

composed of voids, to be more spherical than  regions. On , the expansion fluctuations should 

therefore be larger than the shear fluctuations and so  should be positive. The shear fluctuation 

dominated  regions should have a negative . This increases the difference between the faster 

expanding  and the decelerating  regions even further and therefore magnifies the expansion 

fluctuations on  that drive acceleration via a positive . The fact that  and  are nonzero is 

the main difference to a similar model of Wiltshire (Wiltshire (2007a), Wiltshire (2007b)).

The generalization of the single scaling laws mentioned above, is achieved by imposing the scaling 

on  and  on .  In  Li  and  Schwarz  (2008)  the  authors  showed  that   and 〈 R 〉D may be 

expressed in a Laurent series starting at a D
−1 and a D

−2 respectively. This behaviour breaks down 

if the fluctuations with respect to the mean density become of order one. This happens later on  

and on  because on these regions the mean values lie above, resp. below, the global mean and 



therefore the fluctuations on  with respect to this overdense mean are smaller than the variation 

between the peaks on  and the troughs on . Therefore the a D
−1 scaling for  on  and  is 

expected to hold true even if  the   regions  already depart  from this  perturbatively determined 

behaviour.  The partitioning model  is  therefore  the  first  step  of  a  generalization  to  an arbitrary 

nonlinear behaviour of  and 〈 R 〉D on the global domain .

Using this Ansatz for the -evolution on  and , and exploiting the consistency conditions for 

the partitioning,  it  is  possible to arrive at  a model  that depends only on three parameters:  The 

Hubble rate today H D0 , the matter density today m
D 0 and the volume fraction of the overdense 

regions today λ
0

.  In this  parametrization H D0 sets only the time scale,  so we may fix the 

evolution with m
D 0 and λ

0
.  Assuming for m

D 0 the concordance value of 0.27, the model 

shows  that  the  more  structure  there  is,  indicated  by  a  low  value  of λ
0

,  the  higher  the 

acceleration on the domain  will be.

To analyze what the order of magnitude of  λ is 

today,  an  N-body  simulation  was  studied. 

Smoothing the point distribution on 5h-1Mpc and 

applying  a  simple  number  count  for  the 

determination  of λ
0

,  a  value  of  0.09  was 

obtained.  An  analysis  by  a  Voronoi  tessellation 

gave about  0.02.  To obtain a  definite  value,  this 

analysis  clearly has  to  be  improved.  One  would 

have to use a proper SPH smoothing and trace the 

overdense  regions,  that  are  fixed  in  the  initial 

conditions,   until  today.  But  in  any case, λ
0

 

seems to be in the region below 0.1. Interestingly 

enough, this is the region for λ
0

which leads to a nearly constant  on , shown in Fig. 3. So 

for low values of λ
0

,  acts like a cosmological constant.

Figure 3: Evolution of the backreaction parameter  

in course of cosmic time. From a value of Q
D of 

around 10-7 at a redshift of z≈1000   first  

decreases like a D
−1 and becomes approximately  

constant for a long period of the evolution when λ̇
0

gets important.



Observational strategies
This may also be seen by a fit of the model to 

luminosity distances of supernovae (SN).  To 

convert  the  evolution  of  the  average  scale 

factor a into luminosity distances, we use the 

result of Räsänen (2009), who investigated the 

propagation  of  light  in  inhomogeneous 

universes and provided a formula linking the 

observed  luminosity  distance  to  the  volume 

scale  factor  a.  The  resulting  probability 

contours  in  the  parameter  space m
D 0 -

λ
0

in Fig. 4 show, that indeed the region 

around an m
D 0 of 0.3 and a λ

0
below 0.1 

is favoured by the data.

To further test the viability of the model, it will soon be compared with more observational data. 

But as it is probably possible to fit also this, as indicated by the success of Larena et al. (2009), we 

need a  quantity that  will  definitively allow to  find  out  whether  this  model  or  one  with  a  real  

cosmological constant fits better. To decide that, one may use a quantity introduced by Clarkson et  

al. (2008), namely the C-function

C z =1H 2 D D ' '−D ' 2 H H ' D D '

It consists of derivatives of the Hubble rate H(z) 

and  the  angular  diameter  distance  D(z),  and  is 

constructed such that for every FRW model it is 

exactly 0 for any z. For the partitioning model this 

is generically not the case and for several choices 

of parameters the difference is shown in Fig. 5. 

Unfortunately,  the  function  C(z)  is  too 

complicated to evaluate it using present day data, 

but as shown in Larena et. al (2009), Euclid may 

be able to derive its values.

Figure 4: Probability contours of a fit of the partitioning 

model to the Union2 SN data set. The model gives a  

comparably reasonable fit as a simple ΛCDM model.

Figure 5: Plot of Clarkson's C-function for several  

models discussed in Wiegand (2010). The model  

presented here is shown as the dotted line. The dashed  

line is its nonperturbative generalization and the solid  

line is a single scaling model. For every Friedmann  

model C(z)=0 which allows one to distinguish averaged  

models from FRW models.



Conclusion
Routing the accelerated expansion back to inhomogeneities would be an interesting possibility to 

avoid problems with a cosmological constant, such as the coincidence problem and would give the 

sources of acceleration a physical meaning. Perturbatively analyzed it is clear that the effect is way 

to small to give rise to an acceleration on the scale of the Hubble volume (Brown et al. (2009a), 

Brown et al. (2009b)). There are however semirealistic nonperturbative models like Räsänen (2008) 

that  show  that  a  considerable  effect  is  not  excluded.  Furthermore  it  has  been  shown  why 

perturbative models are not able to give a definite answer on the magnitude of the effect Räsänen 

(2010).  So  it  seems  that  the  question  of  how  the  growth  of  structure  influences  the  overall 

expansion of the universe is still an open issue. The presented partitioning model has shown, that a 

ΛCDM like expansion is possible in the context of these models, without the prior assumption of 

=const., which emerges here more naturally. Furthermore it has been shown how this is related 

to  the  formation  of  structure  described  by the  parameter  λ.  Finally,  using  the  Clarkson's  C-

function, we will have, at the latest with the data from the Euclid satellite, a handle on how to  

distinguish acceleration due to inhomogeneities from the presence of a strange fluid. All in all, these 

are promising prospects for the future...
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