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ABSTRACT 

The universe can be modeled as a gigantic reservoir where only waves that have 

an integer number of modes are allowed; therefore the spectrum of the cosmic 

background radiation has missing frequencies. The spacing between frequencies is 

hopelessly small to be detectable with conventional techniques. However, beats among 

the frequencies give rise to intensity fluctuations that have much lower frequencies, 

allowing observations that can measure the spectral structure introduced by the 

cosmological reservoir. The spectral structure gives information on the large 

scale structure of the universe. For example, it can give the Hubble constant.
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1.  INTRODUCTION 

 Electromagnetic emission (e.g. spontaneous emission) is not a property of an 

isolated emitter (e.g. an isolated atom) but, rather, of an emitter-vacuum system. The 

vacuum acts like a vast "reservoir" in which electromagnetic waves are dumped. The 

reservoir restricts the modes available and therefore the frequencies of allowed 

electromagnetic waves. These characteristics of the emitter-vacuum system are well-

documented and are used in a series of elegant experiments in cavity quantum 

electrodynamics (Berman 1994). 

   The universe can be modeled by a gigantic reservoir as shown in figure 5.8 in 

Peebles (1993). Because only waves that have an integer number of nodes are allowed, 

the spectrum of a radiating source of electromagnetic radiation has missing frequencies 

and therefore has a "picket-fence" structure. The spacing between the pickets can be used 

to determine basic cosmological parameters and the shapes of the pickets give 

information on large scale structure. This extremely fine structure is totally unobservable 

with conventional techniques but one can measure extremely fine frequency spacing by 

observing classical radiation fluctuations. A similar astrophysical application of the 

technique has been suggested by Borra (1997, 2011, 2014) to measure the time delays 

between the beams of a gravitational lensed object; because interference between the 

beams also induces very fine spectral features undetectable by conventional 

spectroscopy. 
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2. RADIATION FLUCTUATIONS AND MISSING FREQUENCIES 

   Let us consider a wave packet propagating in a closed universe. Open 

universes will be discussed later. Let us assume a uniform distribution of matter so that 

the geometry is smooth. As depicted in figure 5.8 in Peebles (1993), the boundary 

conditions are such that only modes that have an integer number of oscillations around 

the "circle" of radius a(t) are allowed. Therefore, given a(t) the scale factor of the 

universe, the allowed modes are only those that satisfy the relation 

 

    nλ =  ka(t),      (1) 

 

where n is an integer number, λ is the wavelength of the mode  and k a geometry-

dependent factor not significantly larger than 1. Equation 1 predicts that the energy 

distribution of any radiating electromagnetic source in free space is made of discrete 

frequencies. This predicts a spectrum made of monochromatic spikes. Measurements of 

the separation between the spikes allow us thus, in principle, to measure a(t) and 

therefore solve the cosmological problem. Unfortunately, the separation between the 

spikes is so small that it is hopelessly beyond the reach of standard spectroscopic 

techniques. However, as we shall see, measuring classical radiation fluctuations allows 

detection of such spacing. 

 Let us consider a wave packet of amplitude, as a function of time, V(t) having the 

frequency spectrum G(ω) given by the Fourier transform of V(t). The radiation signal is 
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thus made by the interference of a continuous distribution of monochromatic modes. The 

discontinuous nature of the frequency spectrum can be mathematically represented by 

the shah function III(x) (Bracewell 1986) which is made by an infinite number of Dirac 

δ functions spaced by unit intervals. In practice, however, we should not expect the 

sampling function to be the shah function which predicts a spectrum made of purely 

monochromatic waves. For example, a real universe has a clumpy matter distribution 

and observations sample electromagnetic beams of finite extent containing radial rays 

which travel distinct geodesics having different lengths distorted by warped space-time. 

This can be modeled with a picket-fence function made of the convolution of the shah 

function with a continuous function S(x) 

 

   p(ωa(t)/c) = III *S  ,   (2) 

 

where the symbol  *  signifies the convolution of the functions III and S. For example, S 

could be a Gaussian function. 

 The frequency spectrum H(ω) is now given by 

 

   H(ω) = p(ωa(t)/c) G(ω).    (3)  
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We thus see that there is a periodic function p(ωa(t)/c) that allows to distinguish between 

the spectrum G(ω) made of a smooth distribution of frequencies and a H(ω) spectrum 

which is not smooth. 

   Although the spacing between the spikes of the function is hopelessly out of 

reach of conventional spectroscopic techniques, an experimental solution is suggested by 

the ingenious experiment devised by Alford & Gold (1958) to measure the speed of 

light, which leads to a similar difficulty.  For brevity, I shall not discuss in details the 

Alford & Gold experiment. It suffices to say that the experiment measures I(t), the 

current from a square law detector (a photomultiplier in their setup), determining τ,  a 

time interval that plays the role of the D/c term in Equation 3, from the spectrum I(ω) of 

I(t) which is modulated by the function cos(ωτ/2). We can then use the current I(t)  to 

get the spectral minima of its fluctuations that are present at frequencies that much lower 

than those of H(ω). 

  Givens (1961) analyzed the Alford & Gold experiment as a wave 

propagation effect and our analysis closely follows his. What allows easy comparison to 

Givens (1961) is the similarity of our Eq. 3 to his Eq. 4 which gives the frequency 

spectrum  

 

  H(ω) = 2 cos(ωτ / 2)G(ω)   .    (4) 
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The periodicity of the cosine term in Eq. 4 is analogous to the periodicity given by the 

shah function in Eq. 2.   

   The function p(ωa(t)/c) is periodic and can be expanded in Fourier series of 

frequency c/ a(t) . Because there are no negative frequencies, we are free to choose the 

form of p(ωc/ a(t)) for ω<0 and can therefore assume that p(ωc/ a(t))  is an even function 

which has therefore real coefficients and can be represented, with τ=2 π a(t)/c, by the 

cosine Fourier series  

 

  p(ωτ ) = an
n= 0

∞

∑ cos(nωτ ).    (5) 

 

Following Givens (1961) we write that the current measured by a square law detector is 

given by 

 

I( t) = f (ω ) f * (φ )G(ω)G* (φ) an
n= 0

∞

∑ cos(nωτ) an
n= 0

∞

∑ cos(nφτ )
 
  

 
  ∫∫ ei(ω −φ )tdφdω . (6) 

 

The product of the two sums in the Fourier series gives a sum of terms containing a02 , 

"pure" terms like a0an cos(nωτ), and a0am cos(mΦτ) as well as mixed terms like aman 

cos(nωτ)cos(mΦτ). Now, let us make the substitution ω = Φ + ω'.  Equation 6 is then 
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made of the sum of an infinite number of integrals containing a02, a0amcos(mΦτ), 

a0ancos(n(Φτ + ω'τ)) and  aman cos(n(Φτ + ω'τ))cos(mΦτ) terms. Decomposing the 

product aman cos(n(Φτ + ω'τ))cos(mΦτ) as a sum of cosines and following a reasoning 

similar to the one in Givens (1961), we obtain that all the terms in the sum of integrals 

that are functions of mΦτ are approximately zero, since f(Φ) and G(Φ) are both slowly 

varying functions of Φ, compared to the rapidly oscillating cos(mΦτ) or cos((m±n)Φτ + 

nω'τ) terms. There is only left the term containing a02 and terms containing 1/2an2 

cos(nω'τ). Defining the periodic function 

 

 P(ω' τ ) = a0
2 + 1/ 2an

2

n =1

∞

∑ cos(nω ' τ ),     (7) 

 

where the coefficients an are the same as in Equation 5, we have that  

 

I( t) = P(ω ' τ ) f (φ +ω ' ) f *(φ)G(φ + ω' )G*(φ)dφ∫ 
 

 
 ∫ eiω ' tdω' .  (8) 

 

 The current I(t) is related to its frequency spectrum I(ω) by 
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  I( t) = 1/ 2π I(∫ ω ' )eiω' tdω' .      (9) 

 

Comparing Equation 8 to Equation 9, we see that  

 

 I(ω ' ) = 2π P(ω ' τ )( ) f (φ +ω ' ) f *(φ)G(φ + ω' )G*(φ)dφ∫ . (10) 

 

The integral gives the autocorrelation function of the product f(ω')G(ω'). We see that the 

frequency spectrum is modulated by the periodic function P(ω'τ)  whose Fourier 

expansion gives coefficients simply related to those of p(ωτ). 

 Astronomical instruments use a bandpass that is small compared to its central 

frequency so that we can, for discussion purposes, use 

 

  f (ω ' )G(ω' ) = gexp(−(ω ' −ω0 )2 /σ 2 ) .  (11) 

 

This allows evaluating the integral in Equation 10 with  

 

  I(ω ' ) = KP(ω 'τ )exp(−1/ 2ω '2 / σ 2 ),   (12) 
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where all the constants are contained in K using the fact that the error function, obtained 

from the integral in equation 10 with equation 11, tends to ± 1 for ω' that tends to ± ∞. 

Equation 12 shows that all information about the central frequency ω0 has been lost, that 

I(ω') is not zero at arbitrarily low frequencies and is periodic with  periods = n τ . It 

illustrates the important effect which shows that a spectral modulation happens at 

frequencies that are considerably outside of the spectral bandpass of the spectral 

frequency measured. The frequency spacing thus becomes measurable.  

 One can intuitively understand Equation 12 by seeing that the signal fluctuations 

are caused by wave beats among all the frequencies in the beam, like wave beats 

modulate the carrier frequency in a radio detector. An unmodulated source differs from a 

modulated source because its frequency spectrum H(ω) is modulated by the picket fence 

function (e.g. some frequencies are missing); consequently the beats of a spectrally 

modulated and an unmodulated source will have different power spectra. Because beats 

generates lower frequencies given by the difference among the beating frequencies, 

closer beating frequencies give lower will frequencies of the fluctuations. This therefore 

allows generating very high resolution spectroscopy (Mandel 1962a). Consequently, the 

extremely fine spectral features predicted by Equation 3 can be detected as current 

fluctuations that have much lower frequencies. 
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3.  DISCUSSION AND CONCLUSION 

 A determination of p(ωa(t)/c) gives information on the large scale structure of the 

universe. The scale parameter a(t) can be obtained from the separation ∆λ between two 

peaks; therefore giving us all the information needed to derive the principal cosmological 

parameters. The function S in Equation 2 gives information on the structure of the 

universe along a line of sight and its determination along different lines of sight gives 

information on the isotropy of the universe. To some reader it may not be obvious what is 

the usefulness of the scale parameter a(t) that can be obtained from the separation ∆λ 

between two peaks; Section 5 in  Peebles (1993) shows that all cosmological parameters 

can be obtained from a(t).  For example Equation 5.4 in Peebles (1983) gives the Hubble 

parameter H as time derivative of a(t) ( da(t)/dt ) divided by a(t).  

 

H =  a(t)/( da(t)/dt )   (13) 

 

 If, on the one hand, determining the rate of separation of the peaks of p(ωa(t)/c) 

gives information on a(t), on the other, the rate of separation must be small enough that it 

is detectable within the time resolution of the instrumentation. We obtain a criterion of 

detectability by imposing that the change in the position of the peak of a given order n, 

δλ, caused by the expansion of the universe, in the time of observation ∆t, be smaller 

than the separation between two peaks ∆λ. Assuming uniform expansion one obtains the 

criterion  
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   δλ/∆λ = H0 a(t)∆t/λ << 1 .    (14) 

 

Because a(t) is of order c/H0, the criterion will become   

 

    δλ/∆λ ≈ ∆t/T <<  1,    (15) 

 

where T is the period of variation of the fluctuation. Equation 12 shows that the power 

spectrum of the fluctuations has power up to a period T = a(t)/c , of the order of the age 

of the universe. There is therefore power for periods considerably greater than one 

second. Typical square law detectors have resolution times significantly lower than one 

second, ensuring that the criterion can be met. 

 The fundamental assumption of this work is that an electromagnetic wave packet 

can be modeled by the interference of infinitely long monochromatic waves. One must 

question whether this is simply a mathematical construct or whether it truly reflects 

reality. The experimental evidence supports the reality of the mathematical model. First, 

as pointed out by Givens (1961), the Alford & Gold experiment requires interference 

over the distance of the experiment (about 60 meters), although the coherence length of 

the white light used was far less than 60-m, which is only possible if there are 

monochromatic waves significantly longer than the coherence length. Second, in a series 
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of experiments, Delisle and coworkers (e.g. Cielo, Brochu,  & Delisle 1975) 

demonstrated spectral modulation with a Michelson interferometer and incoherent white 

light over distances as large as 300-m. Given the short coherence time of the white light, 

interference could only take place in that experiment by considering the constructive or 

destructive interference of the monochromatic modes composing the wave packet. Third, 

in a more telling and remarkable experiment, Chin et al. (1992) demonstrated spectral 

modulation of femtosecond laser pulses in a Michelson interferometer where the path 

difference was greater than the spatial extent of the pulses: There is interference between 

pulses that do not spatially overlap. Chin et al. (1992) conclude that the experiment 

shows that the Fourier components of the short pulse do exist as infinite electromagnetic 

waves.  

 We shall now discus the effect of noise. The noise to consider (kind and 

magnitude) depends on the instruments and techniques that are used, which depend on 

the region of the electromagnetic spectrum used. Its discussion is therefore extremely 

complex and beyond the scope of this paper. In the ideal case, the instrumental or 

background noise can be made negligible but photon shot noise cannot be eliminated 

and gives a limit that can be estimated. Borra (1997) used Mandel's (1962b) discussion 

of the effect of shot noise on the Alford & Gold experiment to estimate the fluxes at 

which the shot noise contribution becomes comparable to the radiation fluctuations in 

astronomical sources. Assuming that the observations are done at the frequency ν = 1 

GHz and α=0.5  Borra (1997) finds that shot noise becomes noticeable for sources 

below 10 milliJansky observed with a 100-m diameter radio-telescope. One can obtain 

better results at lower frequencies since the effect of shot noise decreases ˜ ν for a given 
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flux. Several publication (Hanbury Brown, Jennison, & Das Gupta 1952; Jennison, & 

Das Gupta 1956) that discuss observations of angular sizes and structure of radio sources 

with intensity interferometry show that wave-interaction effects are detectable in 

astronomical radio sources. In this respect, it must be noted that wave interaction 

observations require telescopes that have far lower surface qualities than those used for 

conventional observations (Hanbury Brown, 1968). This signifies that one could use 

large inexpensive low-surface-quality telescopes.  

 Discussion of experimental setups is beyond the scope of this work, but we can 

use it to obtain some experimental guidelines. Shot noise considerations clearly favor 

observations at long wavelength.  The observational setup could involve observing a 

bright astronomical radio source. However, considering that the theory assumes radiation 

from an isolated emitter, one should observe the transparent lobes of extended radio 

sources, rather than their opaque compact cores.  

 The discussion assumes a closed universe. For an open universe one could, for 

computational purposes, use periodic boundary conditions and repeat the same treatment 

as for a closed universe. However, it is not clear to this writer whether the spacing then 

becomes infinitely close rendering it impossible to distinguish the spectrum from a 

continuous one. If it is the case, the success or failure to detect the spacing would allow 

distinguishing between an open or a closed universe. 

 The theory used in this paper and discussed in section 2 models the universe as a 

gigantic reservoir where only waves that have an integer number of modes are allowed: 

One may of course wonder how realistic this model is. The use of this model is validated 
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in section 5 of the book by Peebles (1993). The discussion in Peebles (1993) is very long 

and will take considerable time to read it and understand it. However, Figure 5.8 in 

Peebles (1993) gives a simple, and rapid to understand, illustration of the validity of this 

model. The main message is that observations of radiation fluctuations in radiating 

sources in free space contain information on the large scale structure of the universe. All 

the cosmological parameters (e.g. the Hubble constant H0) can be obtained from the 

function a(t) discussed in section 2. 
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