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Abstract 
 
If the photon has a negative parity under Wigner time reversal this generates a spontaneous 
CPT symmetry breaking effect that causes the photon to carry the quantum electrodynamic 
arrow of time (Leiter, D., 2009, 2010). In order to demonstrate the validity of this idea we 
show that a classic nonlinear optics experiment in the scientific literature, which involves a 
Michelson interferometer using combinations of ordinary mirrors and phase conjugate 
mirrors, contains experimental results which support the idea that the photon has a negative 
parity under Wigner time reversal.   
 

SECTION 1: INTRODUCTION   
 
It has been demonstrated (Leiter, D., 2009, 2010) that the quantum electrodynamic 
measurement process can be completed by inserting an operator symmetry of microscopic 
observer-participation called “Measurement Color” (MC) into Quantum Electrodynamics 
(QED).  
 
The resultant Measurement Color Quantum Electrodynamics (MC-QED) formalism was 
shown to be a nonlocal quantum field theory which contains a time reversal violating 
description of the quantum electrodynamic measurement process which is independent of 
thermodynamic or cosmological assumptions. This occurred because the Measurement Color 
operator symmetry within MC-QED caused the photon operator to have a negative parity 
under Wigner time reversal. Then the requirement of a stable vacuum state generated a 
spontaneous CPT symmetry breaking effect which dynamically generated a quantum 
electrodynamic arrow of time in the Heisenberg operator equations of motion. This result 
differs from the case of QED which does not contain an intrinsic arrow of time since its 
photon operator has a positive parity under Wigner time reversal.  
 
In this context we present analytical arguments which show that a well-known classic 
nonlinear optics experiment in the scientific literature, which uses combinations of ordinary 
mirrors and phase conjugate mirrors in a Michelson interferometer, has produced experimental 
results which represents strong evidence in favor of the MC-QED prediction that the photon 
has a negative parity under Wigner time reversal and that “the photon carries the quantum 
electrodynamic arrow of time”. 
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SECTION II: EXPERIMENT TO TEST FOR THE TIME PARITY OF THE PHOTON 
 
In order to verify the correctness of the microscopic operator observer-participant paradigm 
underlying the structure of the MC-QED formalism it is necessary to demonstrate that 
experiments can be performed which can provide a test for its underlying prediction that the 
photon has a negative parity under Wigner time reversal.  
 
The purpose of this paper is to demonstrate that the results of such an experimental test 
involving nonlinear optics in Michelson interferometers already exists in the literature and 
supports the predictions of the MC-QED formalism.  
 
In order begin our analysis we will consider an experimental arrangement involving a 
Michelson interferometer in which a coherent optical laser beam sent thru a beam splitter 
to creates interference fringes due to multiple reflections in the vertical and horizontal 
arms of the apparatus.   
 
Two different experimental scenarios are considered and their results are compared. The 
first scenario (M-M) is a Michelson interferometer involving the combination of two 
conventional mirrors while the second scenario (PCM-M) is a Michelson interferometer 
involving the combination of a Phase Conjugate mirror PCM and a conventional mirror M.  
 
The schematic drawing of this experimental setup (Wolf, Mandel et, al 1987; Jacobs, et. al. 1987; 
Boyd, et. al. 1987) shown in figure 1 below is one in which one has the option of replacing one of 
the two conventional mirrors with a phase-conjugate mirror PCM.   
 
A laser sends a coherent optical beam thru the interferometer and creates multiple interference 
fringes. Selective changes in the phase α of the internal beams can be generated by the use of a 
gas cell located in positions A, B, or C. The interference fringes can be recorded by the photo-
detector, for both the M-M and the M-PCM configurations, and the results compared to the 
predictions of the QED and the MC-QED formalisms.  
 
If the location of interference fringes recorded by the photo-detector are observed for the case A, 
where the phase shift α introduced by a gas cell located at position A in the figure induces a 
change the phase α of the incident waves on the PC mirror, the results which are obtained can 
experimentally distinguish between the predictions of the QED and the MC-QED formalisms. 
 
In order to understand how this experiment has the potential to be able to distinguish between  
the QED and the MC-QED formalisms we will now discuss the underlying theoretical and 
experimental structure of it in more detail. In a series of three seminal papers (Wolf, Mandel et, al 
1987; Jacobs, et. al. 1987; Boyd, et. al. 1987) published a detailed theoretical analysis, later 
supported by experimental observations, which demonstrated how experiments of this type could  
distinguish between the classical nature of the interference patterns produced by Michelson 
interferometers the M-M and the M-PCM configurations. More modern reviews of this type of 
experiment (Garuccio, 2007) have discussed the additional possibility of using it to  test for 
quantum non-locality and anti-coherence effects in light.  
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Figure 1. A modified version of a Michelson interferometer (Wolf, Mandel et, al 1987; Jacobs, et. al. 1987; 
Boyd, et. al. 1987) in which one has the option of replacing one of the two conventional mirrors with a 
phase-conjugate mirror PCM.  A laser sends a coherent optical beam thru the interferometer and creates 
multiple interference fringes. Selective changes in the phase α of the internal beams can be generated by the 
use of a gas cell located in positions A, B, or C. The interference fringes are recorded by the photo-detector, 
for both the M-M and the M-PCM configurations, and the results compared to the predictions of the QED 
and the MC-QED formalisms.  
 

In particular for the Michelson interferometer in the M-M configuration, which involved normally 
incident linearly polarized light with complex amplitude |A|eiα , it was shown that the locations of 
the bright maxima and dark minima of the time-averaged interference fringes were given 
respectively by: 
 

Bright maxima of interference fringes 
 z = n(λ / 2)                                                               (n = 0,1,2,…)   
 

Dark minimum of interference fringes 
 z = (n + 1/2)(λ / 2)                                                     (n = 0,1,2,…)       
 
On the other hand for the Michelson interferometer in the M-PCM configuration, which involved 
normally incident linearly polarized light with complex amplitude |A|eiα and where the complex 
amplitude reflectivity of the phase-conjugate mirror was assumed to be given by µ = |µ|eiφ (here  
|µ| = 1 and the phase shift φ was given in radians) it was shown that the locations of the bright 
maxima and dark minima of the time-averaged interference fringes were given respectively by: 
 

Bright maxima of interference fringes 
 z = n(λ / 2) + (λ / 2) [(φ / 2 - α) / π ] (n = 0,1,2,…)   
 

Dark minimum of interference fringes 
 z = (n + 1/2)(λ / 2) + (λ / 2) [(φ / 2 - α) / π ] (n = 0,1,2,…)       
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Hence in the context of (Wolf, Mandel et, al 1987; Jacobs, et. al. 1987; Boyd, et. al. 1987) it was 
demonstrated and later shown experimentally that the difference between the location of the 
maximum and minimum of the interference fringes for Michelson interferometers in the M-PCM 
and the M-M configurations was associated with a displacement of the interference pattern in 
radians given by   
 ∆(φ, α) = [(φ / 2) - α] radians   
 
where eiφ was the internal phase shift generated by the phase-conjugate mirror and eiα was the 
phase of incident linearly polarized light  
 
Next we point out that it can be shown (see Appendix I and II) that in MC-QED the connection 
between the coherent photon state vectors |a(α), λ>, and the corresponding coherent classical 
electromagnetic photon fields which they represent, is given by the expectation value of its negative 
Wigner time parity photon operator over the coherent states  |a(α), λ> in the formalism.  Hence in 
the context of MC-QED a coherent photon state associated with propagation vector k and phase α is 
predicted to transform with a negative time parity into a coherent photon state associated with 
propagation vector -k and phase  -(α + π) under Wigner time reversal. This is different from the 
case of QED, where a coherent photon state associated with propagation vector k and phase α is 
predicted to transform with a positive time parity into a coherent photon state associated with 
propagation vector -k and phase –α under Wigner time reversal.  
 
In the context of this difference in the Wigner time reversal properties of coherent photon states 
in QED and MC-QED it is important to note that it has been shown (Chew, Habashi 1985) that 
the “healing effect” associated with removal of intermediate distortions of optical images 
generated by a phase conjugate mirror is physically equivalent, within a constant phase factor 
exp(iφ) of modulus one, to the effects of time reversal. On this basis we conclude that both QED 
and MC-QED will predict the same phase conjugate mirror “healing effect” on the distortion of 
optical images since for QED the constant phase factor is  φ = 0 while for MC-QED the constant 
factor is φ = -π.

Hence from the above experimental and theoretical discussion we find that the difference 
between the location of the maximum and minimum of the interference fringes for Michelson 
interferometers in the M-PCM and the M-M configurations will associated with a displacement 
of the interference pattern in radians is given respectively for QED and MC-QED by   
 

∆(0, α) = -[α] radians                     QED 
 

∆(-π, α) = - [(π /2) + α] radians     MC-QED 
 
In the limiting case where α = 0 this corresponds to a displacement of the interference pattern in 
radians given by 
 ∆(0, 0)  = 0  radians                        QED 
 

∆(-π, 0)  = -(π /2)   radians              MC-QED 
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The difference between the QED and the MC-QED predictions is a reflection of the fact that the 
nonlocal photon operator acting within the quantum field theoretic structure of the MC-QED 
formalism has a negative parity under Wigner time reversal and hence carries the quantum 
electrodynamic arrow of time in the formalism.  For this reason the apparatus discussed in figure 1 
allows an experimental test to be performed to determine if the photon carries the arrow of time as 
predicted by the MC-QED formalism. 
 

SECTION III:  DISCUSSION INTERPRETING THE RESULTS OF THE EXPERIMENT 
 
Results taken from the classic experiment performed by (Jacobs, et al. 1987) are shown in figure 2 
below. While straight lines have been drawn through the data points for the M-PCM and M-M 
configurations in figure 2, it appears that nonlinear internal processes in the gas cell introduce 
oscillation errors into the data which break the predicted linearity for non-zero values of the phase 
shift.  However these nonlinear gas cell oscillation errors will not affect the individual data points at 
phase shift equal to zero, since for these data points the gas cell is not active in the interferometer. 
For this reason only the data points at phase shift equal zero, for which the gas cell does not act in the 
interferometer, will be relevant in the analysis which follows. 
 

Figure 2.  Measured displacement of the interference fringe pattern, for a Michelson interferometer for  
the M-M (metallic mirror) configuration and the M-PCM (PC mirror) configuration (taken from figure 3 of Jacobs, 
et al. 1987). The displacement of the interference pattern in radians is produced by interference between the signal 
and the phase-conjugate waves. It is plotted as a function of the phase shift α introduced by a gas cell whose 
location (in position A in figure 1 above) induces a change the phase α of the incident waves acting on the PC 
mirror. Note that the difference between the displacement of the interference pattern for the M-M (metallic mirror) 
and the M-PCM (PC mirror) configuration for the case of zero phase shift α = 0 appears to be consistent with the 
MC-QED value ∆(-π, 0)  =  -(π /2) = -1.57  Hence the results of this experiment appears to offer strong support in 
favor of  MC-QED and its prediction that the photon carries the arrow of time. 
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In the graph the displacement of the interference pattern in radians, produced by interference 
between the signal and the phase-conjugate waves, is plotted as a function of the phase shift α
introduced by a gas cell whose location, at position A as shown in figure 1, allows it to induce a 
change the phase α of the incident waves on the PC mirror.  
 
Note that the difference between the displacement of the interference pattern for the M-M  
(metallic mirror) and the M-PCM (PC mirror) configuration for the case of zero phase shift  
α = 0 appears to be consistent with the predicted MC-QED value of  ∆(-π, 0)  =  -(π /2) = -1.57 
radians and not with the predicted QED value of  ∆(0, 0)  = 0 radians.  
 
On this basis of these results, this experiment appears to offer strong support in favor of MC-QED 
and its prediction that the photon carries the arrow of time. 
 

SECTION III: CONCLUSIONS 

By incorporating an operator symmetry of microscopic observer-participation called 
“Measurement Color” into Quantum Electrodynamics (QED) the resultant Measurement Color 
Quantum Electrodynamics (MC-QED) contains a time reversal violating description of the 
quantum electrodynamic measurement process which is independent of thermodynamic or 
cosmological assumptions. This occurred because Measurement Color symmetry within  
MC-QED caused the photon operator in the formalism to have a negative parity under Wigner 
time reversal. This created a spontaneous CPT symmetry breaking effect which dynamically 
determined a causal quantum electrodynamic arrow of time in the formalism (Leiter, 2009, 
2010).  
 
On this basis it was shown (see Appendix I and II) that in MC-QED a coherent photon state, 
with propagation vector propagation vector k and phase (α), transformed under Wigner time 
reversal with  negative time parity into a coherent photon state with propagation vector -k and 
phase - (α + π) . This was to be compared to the case of a coherent photon state in QED, with a 
propagation vector k and phase (α), which was shown to transform under Wigner time reversal 
with a positive time parity into a coherent photon state with propagation vector -k and phase  
(–α) under Wigner time reversal.  
 
Because of this difference between the Wigner time reversal symmetry of the photon in  
MC-QED and QED, we demonstrated that a Michelson interferometer experiment involving a 
combination of ordinary mirrors and phase conjugate mirrors could experimentally determine if 
the photon operator has a negative parity under Wigner time reversal and in this way test the 
MC-QED prediction that “the photon carries the arrow of time”.  
 
The experiment shown schematically in figure 1 involved measuring and comparing the 
displacement of the interference fringe pattern, for a Michelson interferometer for the M-M 
(metallic mirror) configuration and the M-PCM (PC mirror) configuration. In the context of 
this experiment it was shown that the displacement in radians ∆(φ, α) of the interference 
pattern in produced by interference between the signal and the phase-conjugate waves was 
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given by  ∆(φ, α) = [(φ / 2) - α],  where φ was the internal phase shift generated by the phase-
conjugate mirror and α was the phase of incident linearly polarized light.  
 
In the limiting case of zero phase shift (α = 0) the difference between the displacement of the 
interference pattern for the M-M (metallic mirror) configuration and the M-PCM (PC mirror) 
configuration predicted by MC-QED has a value of ∆(-π, 0)  =  -π /2  radians which is 
distinctly different from the value of ∆(0, 0)  = 0  radians predicted by QED.  
 
Because of the difference between the Wigner time reversal symmetry properties of the 
photon operator in QED and MC-QED we have shown that well-know classic Michelson 
interferometer experiment discussed in the literature, (Wolf, Mandel et, al 1987; Jacobs, et. al. 
1987; Boyd, et. al. 1987) which involves combinations of ordinary mirrors and phase conjugate 
mirrors, appears to have experimentally demonstrated that the photon operator has a negative 
parity under Wigner time reversal and hence the MC-QED prediction that “the photon carries 
the quantum electrodynamic arrow of time”. It is hoped that this paper will encourage 
experimental physicists to perform more modern versions of the Michelson interferometer 
experiment described in this paper, in order to further verify this experimental result within 
the context of the high accuracy of twenty-first century technology.  
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APPENDIX I: PHOTON BARE STATE STRUCTURE IN THE MC-QED FORMALISM 

It has been shown (Leiter, D. 2009, 2010, http://journalofcosmology.com/Contents.html) that  
the Measurement Color symmetric charge field photon Hamiltonian operator in the MC-QED 
formalism is given by  
 

Hph =  ∑(j) {:∫dx3 [ -1/2 (∂tAµ(j)
(rad) ∂tAµ

(j)
(rad)

(obs)    

 + ∇Aµ(j)
(rad) •∇Aµ

(j)
(rad)

(obs))]:}

where the symbols : : denote operator normal ordering,  (j=1,2,…,N --- > ∞), and 
 

Aµ
(j)

(rad) (x) = (αµ(x) - Aµ
(j)

(-) (x))

Aµ
(j)

(rad)
 (obs) (x) = ∑ (k) ≠ (j) Aµ

(k)
(rad) (x) = Aµ

(j)
(-) (x) 

αµ(x) = ∑ (j) Aµ
(j)

(-) (x) /(N-1)  
 
are linear functions of the negative time parity operator Aµ

(j)
(-) (x) = ∫ dx4’D(-)(x-x’)Jµ(j)(x’)                                                   

where Aµ
(j)

(-)(x) = (Aµ
(j)

(-)(x)
�

which implies that  �2Aµ
(j)

(-)(x) = 0 which from the above 

 also implies that �2Aµ
(j)

(rad)
 (obs) = �

2Aµ
(j)

(rad)  = �
2αµ(x) = 0. 

 
The negative time parity operators  Aµ

(j)
(rad), Aµ

(j)
(rad)

 (obs) and αµ (j =1,2, … , N� ∞)
can be respectively expanded as 
 

Aµ
(j)(x) = (αµ(x) - Aµ

(j)
(-)(x)) = ∫dk3 / √[2(2π)3 k2)]  {aµ(j)(k)e – i k •x + aµ(j) (k)�e i k • x }

Aµ
(j)

(rad)
 (obs)(x) = Aµ

(j)
(-)(x) =  ∫dk3 / √[2(2π)3 k2)]  {aµ(j)

(-)(k) e – i k •x + aµ(j)
(-) (k)�e i k • x }

αµ(x) = ∑ (j) Aµ
(j)

(-) (x) /(N-1) =  ∫dk3 / √[2(2π)3 k2)]  { αµ(k)e – i k •x + αµ(k)�e i k • x }

where   k • x = kν xν = k•x + k0 x0 and  k = n / λ , k0 = ν / c

From the above we see that 

 aµ(j)
(-)(k) = aµ(j)

(rad)
 (obs)(k) , αµ(k) = ∑ (j) aµ(j)

(-) (k)/(N-1)  = ∑ (j) aµ(j)(k)

aµ(j)(k) = αµ(k) - aµ(j)
(-)(k) = ∑ (j) aµ(j)

(-)(k)/(N-1) - aµ(j)
(-)(k)
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We now show that the time reversal violating Measurement Color symmetric operators αµ(k)
and αµ(k)� act respectively as destruction and creation operators for Measurement Color 
symmetric charge field photon states in MC-QED.   
 
We begin by substituting the above representations of   Aµ

(j)(x)  ,  Aµ
(j)

(obs)(x) , and  αµ(x) 
into the above MC-QED commutation relations to find (j, m  =1,2, … , N� ∞)

[aµ(j)
 (-) (k),  aν(m)

(-)
�

(k’)] = (1 - δ jm) (-ηµνλ0 δ
3(k - k’))

[αµ(k), aν(j)
(-)
�

(k’)] = -ηµνλ0 δ
3(k- k’) 

[αµ(k),  αν(k’)] = (-ηµνλ0 δ
3(k - k’))(N / (N-1))

[αµ(k), aν(j)(k’)
�] = 0

[aµ(j)
 (-)

�
(k),  aν(m)

(-)
�

(k’)] = 0

[aµ(j)
(-) (k),  aν(m)

(-)(k’)] = 0

where k0 = √(k2) = ω(k) and all other commutators vanish.  
 
Next we substitute above representations of   Aµ

(j)(x)  and  Aµ
(j)

(obs)(x)  into the charge field 
photon hamiltonian Hph which gives the charge field photon Hamiltonian as\ 
 

Hph = ∑(j) {: [- ∫dk3 / k0(ω(k) aµ(j)
 (-)

�
(k) aµ(j)

(-)(k)]:}

and normal ordering of operators inside of the symbols {: : } has been taken.  
 
In addition by inserting 
 

aµ(j)(k) = αµ(k) - aµ(j)
(-)(k) and  αµ(k) = ∑ (j) aµ(j)

(-) (k)/(N-1)  = ∑ (j) aµ(j)(k)

into Hph the hermetian property of the photon hamiltonian  Hph = Hph
�

follows directly. 
 
In this context if the bare MC-QED charge field photon vacuum state |0ph> is defined by  
 

aµ(j)
(-)(k)| 0ph > = 0        (j =1,2, … , N� ∞)

this implies that  Hph | 0ph > = 0 as required.  
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Now since  αµ(k) = ∑ (j) aµ(j)
(-)(k) /(N-1) the above definition of  |0ph> also implies that the 

bare charge field photon vacuum state also obeys 
 

αµ(k)| 0ph > = 0

In this context the bare single charge-field photon in MC-QED can be defined as 

|λ1µ> = αµ(k1)
�

|0>  = (1 / (N-1) ∑ (j) aµ(j)
(-)
�

(k1)(j) |0>  
 
This can be seen by calculating  

Hph |k1> = - ∑ (j)) ∫dk3 / k0 (ω(k) aν(j) (k)
�aν(j)

(-) (k)αµ (k1)
�)|0> 

 
Then using the fact that  
 

[αµ(k),  aν(j)
(-)
�

(k’)] = -δµνk0 δ
3(k - k’)   and     αµ (k1)=∑ (J) aµ(j) k1)

we have 
 

Hph |k1> = ∑ (J) ∫dk3 (ω(λ)aν (j)
(λ)

�
) (-δµ

ν)δ3(λ - λ1) |0>  
 

= ω(k1) ∑ (J) aµ(j)�
(k1) |0>   

 

= ω(k1) (αµ (k1)
�

|0>    = ω(k1) |k1> as required       
 
Hence the N-bare charge-field photon states in MC-QED are defined as 

 

|kα1, k2β, k3γ, ….  > = (1/N!)1/2 αα(k1)
� αβ(k2)

�αγ(k3)
�

….  |0> 
 
In a similar manner as that of the covariant form of QED, consistency with the expectation  
value of the operator form of Maxwell equations in the covariant form of MC-QED requires that 
an Indefinite Metric Hilbert space must be used.   
 
In the context of an Indefinite Metric Hilbert space, the subset of physical bare charge field 
photon states in MC-QED contained within the above set of multiple charge field photon 

eigenstates of Hph are required to obey the Weak Subsidiary Condition  λµ aµ(j) (k) |ψ> = 0
where    

aµ(j)(k) = αµ(k) - aµ(j)
(-)(k) = ∑ (j) aµ(j)

(-)(k)/(N-1) - aµ(j)
(-)(k)
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which requires them to contain equal numbers of timelike and longitudinal charge field photons. 
Since the Indefinite Metric Hilbert space implies that charge field photon states with an odd 
number of time-like charge field photons have an additional negative sign associate with their 
inner product, the combination of the Weak Subsidiary Condition and the Indefinite Metric 
Hilbert space together imply that the physical bare charge field photon states have a positive 
semi-definite norm and energy momentum expectation values similar to that of the QED 
formalism.  
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APPENDIX II:  COHERENT PHOTON STATES IN THE MC-QED FORMALISM 

While the fermion current operators J(k)µ(x,t) in MC-QED transform under Wigner time reversal 
as Tw J(k)µ(x,t)Tw

-1 = J(k)
µ(x,-t) similar to that of QED, the charge-field photon operators 

 
Aµ

(j)
(rad)

 (obs) (x) = ∑ (m) ≠ (j) Aµ
(m)

(rad) (x) = Aµ
(j)

(-) (x) 

Aµ
(j)

(-)(x) = ∫dk3 / √[2(2π)3 k2)] {aµ(j)
(-)(k)e – i k • x + aµ(j)

(-) (k)�e i k • x }

αµ(x) = ∑ (j) Aµ
(j)

(-) (x) /(N-1) =  ∫dk3 / √[2(2π)3 k2)]  { αµ(k)e – i k •x + αµ(k)�e i k • x }

where   k • x = kν xν = k•x + k0 x0 and  k = n / λ , k0 = ν / c, have a negative parity under Wigner 
Reversal operator Tw as   
 

Tw Aµ
(j)

(-)(x,t)Tw
-1 = - Aµ(j)

(-)(x,-t)   
 

Twαµ(x,t)Tw
-1 = - αµ(x,-t)   

 
Hence this implies that under Wigner Time reversal Tw the charge-field photon creation and 
annihilation operators in MC-QED also transform with a negative time parity respectively as  
 

Tw aµ(j)
(-)(k)�Tw

-1 = - aµ(j)
(-)(-k)� Tw aµ(j)

(-)(k)Tw
-1 = - aµ(j)

(-)(-k)
Tw αµ(k)�Tw

-1 = - αµ(-k)
�

Tw αµ(k)Tw
-1 = - αµ(-k) 

Now in MC-QED a coherent photon state | a(ϕ), k> of frequency ω(k) = √(k2) = k0 and 
complex phase a(α), is an eigenstate of the charge-field photon destruction operator   
αµ(k) = εµ α(k) as     αµ(k) | a(α), k> = εµ a(α) | a(α), k> which is satisfied if 
 

α(k) | a(α), k> = a(α) | a(α), k>

Solving for a coherent photon state | a(α), k> with a mean photon number  <N> yields 

|a(α) , k> = exp(-<N>/2) exp[a(α) αµ(k)�]|0> 

where  a(α) = (<N>1/2 exp(iα).   In terms of the n-photon state of frequency  ω(k) is given by 
 

|n, λ> = (1/(n!)1/2 αµ(k)�αv(k)�αη(k)� ….  |0> 
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the above expression for | a(α), k> can be written in the more explicit form  

|a(α), k> =∑ n = 0,1,…∞ [exp(-<N>/2)  (<N>
n

/ n!)1/2 exp(inα) |n, k>] 
 
By calculating  <a(α) , k | a(α) , k> we see that the distribution of photons in the coherent state  

is obeys a Poisson statistical distribution Π n (<N>) =[exp(-<N>)  (<N>
n

/ n!)] since 
 

<a(α) , k | a(α) , k> =∑ n = 0,1,…∞ [exp(-<N>)  (<N>
n

/ n!)] =∑ n = 0,1,…∞ Π n (<N>) 
 

Since αµ(k) = εµα(k) and the bare charge field photon creation operators α(k)� have a  

negative parity under Wigner Time reversal Tw given by Tw ε
µα(k)

�
Tw

-1 = - εµα(-k)�, we find 
that Wigner time reversal Tw acting on the coherent photon state | a(ϕ), k> gives 
 

|a(α), k>Tw =  Tw | a(α), k> = ∑ n = 0,1,…∞ [exp(-<N>/2)  (<N>
n

/ n!)1/2 exp(-inα) Tw |n, k>]  

 = ∑ n = 0,1,…∞ [exp(-<N>/2) (<N>
n

/ n!)1/2 exp(-inα) (-1)
n

|n, -k>] 

 = ∑ n = 0,1,…∞ [exp(-<N>/2) (<N>
n

/ n!)1/2 exp(-in(α + π))|n, -k>] =  |a(-[α + π]), -k>

Hence the negative time parity of the Wigner time reversed coherent photon state in MC-QED 
implies an observable difference between time reversed phase-conjugate coherent states in QED 
and MC-QED.  
 
This is because for MC-QED 
 

|a(α), k>Tw = Tw |a(α), k> = | a(-[α + π]), -k>
while for QED 

|a(α), k>Tw = Tw |a(α), k> = | a(-α), -k>

Hence in QED a coherent photon state associated with wave vector  k and phase α is predicted to 
transform into a coherent photon state associated with wave vector  -k and phase –(α) under 
Wigner time reversal, while in MC-QED a coherent photon states associated with wave vector k
and phase α is predicted to transform into a coherent photon state associated with wave vector -k
and phase -(α + π) under Wigner time reversal.  
 
Nonetheless the distribution of photons in the Wigner time reversed coherent state for both QED 
and MC-QED obey a Poisson statistical distribution since by direct calculations we find that for 
both theories 

 Tw<a(α) , k | a(α) , k> Tw = <a(α) , k | a(α) , k> = ∑ n = 0,1,…∞ Π n (<N>) 
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Since reflection from phase conjugate mirrors physically creates the effects of time reversal 
on coherent optical beam of photons, this difference between QED and MC-QED should be 
observable in the context of optical interferometer experiments involving combinations of 
ordinary mirrors and phase conjugate mirrors. 

Even though MC-QED is a non-local quantum field theory, the formal similarity between the 
quantum field theoretic structure of MC-QED and QED implies that the connection between the 
coherent photon state vectors |a(ϕ), k> and the corresponding coherent classical electromagnetic 
photon fields which they represent is given by the expectation value over the coherent state   
|a(α), k> of the observed radiation charge-field Aµ

(k)
(rad)

 (obs)(x) as  
 

<a(α), k| Aµ
(k)

(rad)
 (obs)(x) |a(α), k>

where in the above we have 
 

|a(α), k> =∑ n = 0,1,…∞ [exp(-<N>/2)  (<N>
n

/ n!)1/2 exp(inα) |n, k>] 

 |n, k> = (1/(n!)1/2 αµ(k)�αv(k)�αη (k)� ….  |0>  

Aµ
(j)

(rad)
 (obs)(x) = Aµ

(j)
(-)(x) =  ∫dj3 / √[2(2π)3 k2)]  {aµ(j)

(-)(k) e – i k •x + aµ(j)
(-)(k)�e i k • x }

and  k • x = kν xν = k•x + k0 x0 = (k • x -νt),    k = n / λ , k0 = ν / c

Now since the MC-QED commutation relations imply that 
 

[aν(j)
(-) (k’) , αµ(k)

�] = [αµ(k),  αν(k’)
�] = -ηµνλ0 δ

3(k - k’) 

then the action of the   aν(j)
(-) (k’) operator on |n, k> produces the same effect as the action of 

the αµ(k) operator on |n, k> .

Hence α(k) | a(α), k> = a(α) | a(α), k> implies that    aν(j)
(-) (k)| a(α), k> = a(α) | a(α),k>

where a(α) = (<N>1/2 exp(iα),. From this we see that 
 
<a(α), k| aµ(j)

(-)(j) e – i λ • x |a(α), k> = e – i k • x <a(α), k| aµ(j)
(-)(λ) |a(α), k>

= e – i k •x a(α) <a(α), k|a(α), k>

= C(<N>) e -i (k •x - α)

where 

C(<N>) =(<N>1/2 ∑ n = 0,1,…∞ [exp(-<N>)  (<N>
n

/ n) 
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Taking the hermetian conjugate of the above equations we also see that 

<a(α), k| aµ(j)
(-)(k)

�
e i k •x |a(α), k> = C(<N>) e i (λ • x - α)

Hence for a coherent photon state | a(α), k> with a mean photon number  <N> 
 

<a(α), k| Aµ
(j)

(rad)
 (obs)(x) |a(α), k> = C(<N>)∫dk3 / √[2(2π)3 k2)]{e – i (k • x - α) + e i (k • x - α)}

where     C(<N>) =(<N>1/2 ∑ n = 0,1,…∞ [exp(-<N>)  (<N>
n

/ n) 

Recalling for a Wigner Time reversed coherent photon state that 
 

|a(α), k>Tw = Tw |a(α), k> = | a(-[α + π]), -k>

then it follows that 
 
Tw<a(α), k| Aµ

(j)
(rad)

(obs)(x) |a(α), k>Tw 
= <a(-[α + π]), -k| Aµ

(j)
(rad)

 (obs)(x) |a(-[α + π]), -k>

= C(<N>)∫dk3 / √[2(2π)3 k2)] {e – i (-k •x - νt - [α + π]) + e i (-k •x -νt + [α+π])}

where C(<N>) =(<N>1/2 ∑ n = 0,1,…∞ [exp(-<N>)  (<N>
n

/ n) 

Hence in MC-QED under Wigner time reversal we see that 
 
C(<N>)∫dk3 / √[2(2π)3 k2)] {e – i (k • x - α)}

----> C(<N>)∫dk3 / √[2(2π)3 k2)] {e – i (-k • x -νt + [α+π])}

While in QED under Wigner time reversal we see that 
 
C(<N>)∫dk3 / √[2(2π)3 k2)]{e – i (k • x - α)}

----> C(<N>)∫dk3 / √[2(2π)3 k2)] {e – i (-k • x -νt + α])}
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Hence in a similar manner as that of QED the connection between the coherent photon state 
vectors |a(α), k> and the corresponding coherent classical electromagnetic photon fields which 
they represent is given in MC-QED by the expectation value over the coherent state  |a(α), k> of 
the observed radiation charge-field Aµ

(k)
(rad)

 (obs)(x). However in contrast to QED, where a 
coherent photon state associated with propagation vector k and phase α is predicted to transform 
into a coherent photon state associated with propagation vector -k and phase –α under Wigner 
time reversal, in MC-QED a coherent photon states associated with propagation vector k and 
phase α is predicted to transform into a coherent photon state associated with propagation vector 
-k and phase  -(α + π) under Wigner time reversal.  
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