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Abstract 

            Considerable work has been done by taking     as a real scalar field in cosmology. 

We present here a five-dimensional cosmological model with a complex scalar field  and 

a constant deceleration parameter q. The physical significance of   is provided by its 

modulus. Exact solutions of the field equations are obtained. The decay of the extra 

dimension with the evolution of the universe for a five- dimensional model is exhibited. 

The physical properties of the model are examined. 

Keywords: Higher dimensions, Chaplygin gas, Scalar field, Accelerated Universe, 

Deceleration parameter. 

 

1.Introduction 

          Observational evidences point towards an accelerated expansion of the universe. 

Researches are going on for finding out the origin of accelerated expansion of the present 

universe. The dark energy occupies about 73% of the energy of our universe, while dark 

matter occupies about 23% and the usual baryonic matter 4%.The dark energy is 

responsible for cosmic acceleration. The present day universe in which we live is four-

dimensional. Attempts are being made by a section of workers to recast the theory of 
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relativity in a higher-dimensional space-time. The existence of extra dimensions is 

necessary in any attempt to unify gravity with other forces of nature. Also modern 

developments of superstring theory and Yang-Mills super-gravity in its field theory limit 

need higher dimensional space-time. In recent years there has been considerable interest in 

theories with higher- dimensional space-time, in which extra dimensions are eventually to 

a very small size, contracted apparently beyond our ability for measurement. A model of 

higher dimensions was proposed by Kaluza and Klein [2, 3] who tried to unify gravity with 

electromagnetic interaction by introducing an extra dimension which is an extension of 

Einstein’s General Relativity in five dimensions. The activities in extra dimensions also 

stem from the Space-Time-Matter (STM) theory proposed by Wesson et al. [4]. In recent 

years, a number of authors [5, 6, 7, and 8] have considered multidimensional cosmological 

models. Also many more authors have studied the Kaluza-Klein inhomogeneous 

cosmological models with and without cosmological constant. A scalar field  with a 

potential )(V which is known as quintessence and decreases slowly with time, may be 

another candidate for dark energy. Quintessence exerts negative pressure and it 

(quintessence) is a slowly rolling scalar field  and has potential )(V [9]. It has been a 

natural choice to try to understand the present acceleration of the universe by also using 

scalar fields [10, 11]. A complex scalar field is not an unfamiliar idea in physical science. 

The wave function, which is an essential concept in quantum mechanics, is a complex 

quantity subject to the interpretation that its physical significance is by its modulus. 

Another type of dark energy, the so-called pure chaplygin gas model which obeys an 

equation of state like [12] 


A
p   ,where A is a positive constant, p and  respectively 

the pressure and density of the fluid can be taken for study as it possesses the negative 

pressure. The above equation was modified to the form 


A
p  with 10   . This 

model has been studied previously by V.Gorini et.al and M.C Bento et.al [13, 14]. Some 

Journal of Cosmology (2013), Vol. 21, No. 43, pp 9778-9796. 2



 
 

3 
 

further work has been done on modified chaplygin gas obeying an equation of state [15, 

16] 



A

p   with 10    where   and A  are positive constants. 

 In section 2, we present the field equations for the five-dimensional spatially flat, 

homogeneous and anisotropic cosmological model. In section 3 of this paper we obtain the 

solution of the field equations by assuming a relation between the scale factors a (t) and 

b(t). In section 4, we study the physical character of the model. Lastly the paper concludes 

with a short discussion in section 5. 

 2. The Field Equations and The Cosmological Dynamics of The Scalar Field Dark 

Energy Model 

  We consider a spatially-flat, homogeneous and anisotropic five dimensional space-time model 

described by the line-element 

22222222222 )(]sin)[( dytbdrdrdrtadtds      (1) 

where )(ta and )(tb  being functions of time represent the scale factors of the four-

dimensional FRW cosmological space-time and the extra dimension respectively.  

We consider that the universe is filled with scalar field   having potential )(V  

and normal matter. The Einstein field equations are given by 
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1        (2) 

where 18  cG and 
jiR are the Ricci tensors and ji

MT )( , jiT )( are the energy- 

momentum tensors for normal matter and scalar field  respectively and 
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where *  denotes the conjugate complex of  . 

The Einstein field equations for the metric (1) are   

  m
ab

ba

a

a 
33

2

2

       (5) 

pp
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pp
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2

2

33


 
      (7) 

where dot denotes time-derivatives and p and  represents the pressure and density of 

the scalar field and mp and m denotes the pressure and energy density of the ordinary 

matter respectively. p and  are given by 

 


 Vp 
2

2


        (8) 

)(
2

2




 V


        (9) 

In this case we assume that there is no interaction between scalar field and normal matter, 

hence they are separately conserved. 

 

 

The energy conservation equation for normal matter  

   0)(3 









 mmm p

b

b

a

a



        (10) 
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Also the evolution equation for scalar field is 

    
0)(3 /   V

b

b

a

a






        (11) 

where dash denotes derivatives with respect to  . 

 

3. Solutions of Field Equations 

The field equations (5)-(7) are a system of three equations with four unknown parameters 

mm andpba ,,, .Therefore to obtain exact solutions of the field equations we need one 

more equation. The 5
th

 dimension dies away as the physical four dimensions evolve. Hence 

a choice has to be adopted keeping this fact in view. We assume that the relation between 

the metric coefficients reads as 

akb 1          (12) 

where 1k and  are constants. 

Substituting equation (7) into equation (6) and using equation (12) we obtain 

0)2(
2

2


a

a

a

a 
         (13) 

Integrating equation (13) we get 

 3

1

Cta          (14) 

where C is the constant of integration and 3 .  

For  5.23    ,  0a  and  0a   i.e. the universe accelerates. 
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From equation (12) and (14) we have 





 3

2tkb          (15) 

where Ckk 12   

We define H and the deceleration parameter q in terms of 4 dimensions as they only are 

relevant to cosmological observations. 

Then Hubble parameter H for 4-dimensional model is given by 

ta

a
H

)3(

1





        (16) 

The 4D deceleration parameter q is given by 

 2
2a

aa
q




= constant       (17) 

4. Physical Nature of The Model 

The scale factor or the cosmic scale factor of the Friedmann equation is a function of time 

which represents the relative expansion of the universe. The evolution of scale factor is a 

dynamical question, determined by the equation of general relativity, which are presented 

in the case of a locally isotropic, locally homogeneous universe by the Friedmann 

equations. 

 From equation (14) we see that the scale factor )(ta  and  ta increases with the increase in 

cosmic time t  as shown in the Fig. 1 and Fig.2 respectively 
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                  Fig. 1 Variation of scale factor )(ta  with cosmic time t for 1C , 6.2 .  
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                                          Fig.2 Variation of  
dt

da
ta   with time t . 

From fig.2 it is found that  ta  increases with the increases in cosmic time t  , 

1C , 6.2  . 

From equation (16) we observe that the Hubble parameter H  decreases as the cosmic 

time t   increases as shown in the Fig.3  
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                                                                      Fig.3                                    

                   Fig.3 Variation of Hubble parameter H with cosmic time t  for 6.2 . 

From equation (16) we see that the scale factor )(tb  decreases with cosmic time t as shown 

in  Fig. 4. 
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                                                                           Fig.4 

Fig. 4 Variation of scale factor )(tb  with cosmic time t  for 6.2 and 12 k  
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The barotropic equation of state for normal matter is 

mmp          (18) 

Substituting equation (12) and equation (18) in equation (10) and integrating we obtain 

)3)((

0

  i

m a        (19) 

0   
being positive constant 

Substituting equation (12), (14), (18) and (19) in equations (5) and (6) or (7) and solving 

these equations we obtain 

2

1

)1(

1

2

2
)1(

)3(

)1(
6 













  




 tt        (20) 

where  0)( )3)(1(

01    C
 

For 5.23   , while the universe accelerates  0,0  aa  , the scalar field   

becomes complex. The physical significance of   is provided by its modulus. We have 

taken   for accelerating universe. 

 From equation (20) we see that   increases with cosmic time t , which is shown in Fig.5.
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 Fig.5.shows the variation of    against cosmic time t  for barotropic fluid by taking 

2.0,
3

1
,6.2 1  

 

and   
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                                                            Fig.6 

Fig.6. shows the variation of )(V against cosmic time t  for barotropic fluid by choosing 

2.0,
3

1
1    

We take potential as a function of   . 

From equations (20) and (21), it is seen that )(V cannot be expressed in terms of 

 explicitly. For physical investigation, we have plotted )(V  against    for some 

particular values of arbitrary constants 2.0,
3

1
,6.2 1    in Fig.7. This figure 

shows the variation of )(V  with  . 
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                                Fig.7                    

 Fig.7 shows the variation of )(V  with  for barotropic fluid using the constants  

2.0,
3

1
,6.2 1    

From equations   (14) and (20) we obtain the graphical representation of  with the scale 

factor )(ta .
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                      Fig.8  

Fig.8 shows the variation of    with scale factor )(ta  for barotropic fluid by 

choosing 2.0,
3

1
,6.2 1     .    It is observed that   increases with the increase in 

the scale factor a(t) .                                                               

 

The equation of state for modified chaplygin gas [15, 16] is given by  

10,  





m

mm

A
p        (22) 

where   and A are positive constants.  

Then from (10) we get the expression for energy density as 

1

1

)1)(3)(1(

1 ][    FaHm
      (23) 

where )0(1 H  and 0
1







A
F are constants. 

Substituting equations (12), (14), (22) and (23) in equation (5) and (6) or (7) and solving 

these equations we obtain 
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where 0
)1)(1(

1
2 

 C

H
H   

For 5.23   , while the universe accelerates  0,0  aa  , the scalar field   

becomes complex. We have taken modulus of  ,i.e.   for its physical significance. From 

equation (24) we see that   increases with cosmic time t, which is shown in Fig.9. 

 

 
             

1 2 3 4 5

54

52

50

48

46

44

42

t                                                  
 

                                                                          Fig.9 

Fig.9 shows the variation of   against cosmic time t  for modified chaplygin gas model by 

taking 2.0,1.0,
3

1
,6.2 2  HF 2.0,1.0    

It is observed that   increases with time t. 
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and 

          
  1

1
)1)(1(

2)1(
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)( 

   FtHV      (25) 
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                                                                     Fig.10 

Fig.10 shows the variation of )(V  against cosmic time t  for modified chaplygjn gas 

model by taking 2.0,1.0,
3

1
,6.2 2  HF 2.0,1.0    

 

From equations (24) and (25), it is seen that )(V  cannot be expressed in terms of   

explicitly.  Graphically we have plotted )(V  against scalar field   for some particular 

values of arbitrary constants 2.0,1.0,2.0,1.0,
3

1
,6.2 2   HF in Fig.11.    
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 Fig.11 shows that the variation of )(V  against   for modified chaplygin gas by 

choosing the constants 2.0,1.0,2.0,1.0,
3

1
,6.2 2   HF

 

Also from equation (14) and (24) we obtain the graphical representation of   with the 

scale factor )(ta  
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 Fig.12 shows the variation of   with the scale factor )(ta  for modified chaplygin gas by 

taking 2.0,1.0,2.0,1.0,
3

1
,6.2 2   HF  

 
. It is observed that   

increases with the increase in the scale factor )(ta  .                                                               

5. Discussions 

 We have presented (4+1) dimensional Einstein field equations where 4-dimensional 

space-time is described by FRW metric and that of extra dimension by a Euclidean metric. 

This model is meant for 0k (flat). Also we have considered the anisotropic model of the 

universe filled with normal matter and scalar field. For 5.23    , from equation (14) 

and (15) we see that the scale factors )(ta increases while )(tb decreases and q, the 

deceleration parameter becomes negative. Thus we see that the extra dimension becomes 

insignificant as the time proceeds after the creation and we are left with the real four-

dimensional world. We have two types of fluids viz.barotropic and chaplygian. For the 

sake of simplicity, the fluids are taken to be non-interacting. We intend to consider 

interacting fluids in a future communication. 

    A complex scalar field is not an unfamiliar idea in physical science. The wave function, 

which is an essential concept in quantum mechanics, is a complex quantity subject to the 

interpretation that its physical significance is given by its modulus. Here we have found 

that the scalar field    increases with the increase in the scale factor )(ta  . Also 4D Hubble 

parameter )(tH decreases with the increase in cosmic time t   and the scale factor )(ta   

increases with the increase in cosmic time t  and with the increase in the scalar field   , 

which is the scenario of accelerating universe. 

 

* This paper is dedicated to Prof.K.D.Krori for non-static charged solution called 

Vaidya-Krori-Barua solution in General Relativity. 
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