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ABSTRACT 

This is the third part a three part report. It covers the complete model
for curvature cosmology and includes the topics of entropy, Olber's 
paradox, black holes, astrophysical jets and large-number coincidences 
that are particularly relevant for curvature cosmology but but are not 
decisive in testing cosmologies. Curvature pressure can explain the de 
ciency of solar neutrinos and curvature redshift can explain the 
anomalous acceleration of Pioneer 10.The preceding report (Part 2) 
covered the topics: X-ray background radiation, cosmic 
background microwave radiation, dark matter, Sunyaev–
Zel'dovich effect, gravitational lensing, Lyman- forest, nuclear 
abundances, galactic rotation curves, redshifts in our Galaxy, 
anomalous redshifts and voids. An analysis of the best raw data 
for these topics shows that, in general, they are consistent with 
both Big Bang cosmology and curvature cosmology. Whereas the 
conclusions in Part 1 would be valid for any reasonable static 
cosmology the analysis in Part 2 requires specific characteristics 
of curvature cosmology. Part 3, presents and covers the complete 
model. 
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Observational evidence favors a static universe

Part 3

1 Introduction

Part 3, provides a complete description of CC and its two major hypotheses:

curvature redshift and curvature pressure. Although it is not a new idea it is

argued that gravitation is an acceleration and not a force. This idea is used to

justify the averaging of accelerations rather than forces in deriving curvature

pressure.

The next section (Section 3) includes the topics of entropy, Olber’s paradox,

black holes, astrophysical jets and large-number coincidences that are particu-

larly relevant for CC but are not important for choosing between BB and CC.

Although the explanation for the deficiency in observed neutrinos from the

sun can be explained by neutrino oscillations it is include here because curvature

pressure makes excellent estimates of the expected numbers without any free

parameters. The heating of the solar corona is a very old problem and still not

fully explained. It is treated here simply to show that curvature redshift offers

no help.

Finally it is shown the Pioneer 10 anomalous acceleration can be explained

by the effects of curvature redshift that is produced by interplanetary dust

provided the density of the dust is a little higher than current estimates.
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2 Curvature Cosmology Theory

Curvature cosmology (CC) is a static tired-light cosmology where the Hubble

redshift (and many other redshifts) is produced by an interaction of photons

with curved spacetime called curvature redshift. It is a static solution to the

equation of general relativity that is described by the Friedmann equations

with an additional term that stabilizes the solution. This term called curvature

pressure is a reaction of high speed particles back on the material producing the

curved spacetime. This sense of this reaction is to try and reduce the curvature.

The basic cosmological model is one in which the cosmic gas dominates the mass

distribution and hence the curvature of spacetime. In this first order model, the

gravitational effects of galaxies are neglected. The geometry of this CC is that

of a three-dimensional surface of a four-dimensional hypersphere. It is almost

identical to that for Einstein’s static universe. For a static universe, there is

no ambiguity in the definition of distances and times. One can use a universal

cosmic time and define distances in light travel times or any other convenient

measure. In a statistical sense CC obeys the perfect cosmological principle of

being the same at all places and at all times.

CC makes quite specific predictions that can be refuted. Thus, any obser-

vations that unambiguously show changes in the universe with redshift would

invalidate CC. In CC, there is a continuous process in which some of the cos-

mic gas will aggregate to form galaxies and then stars. The galaxies and stars

will evolve and eventually all their material will be returned to the cosmic gas.

Thus, a characteristic of CC is that although individual galaxies will be born,

live and die, the overall population will be statistically the same for any observ-

able characteristic.
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This paper is the culmination of many years of work and is a complete

re-synthesis of many approaches that I have already published. Because hy-

potheses and notations have changed and evolved, direct references to these

earlier versions of the theory would be misleading. Table 1 (all with author

D. F. Crawford) is provided briefly stating each reference and the major topic

in each paper. In nearly all cases, the data analyzed in the papers has been

superseded by the more recent data that are analyzed in this paper.

2.1 Derivation of curvature redshift

The derivation of curvature redshift is based on the fundamental hypothesis of

Einstein’s general theory of relativity that spacetime is curved. As a conse-

quence, the trajectories of initially-parallel point particles, geodesics, will move

closer to each other as time increases. Consequently in space with a positive cur-

vature, the cross sectional area of a bundle of geodesics will slowly decrease. In

applying this idea to photons, we assume that a photon is described in quantum

mechanics as a localized wave where the geodesics correspond to the rays of the

wave. Note that this wave is quite separate from an electromagnetic wave that

corresponds to the effects of many photons. It is fundamental to the hypothesis

that we can consider the motion in spacetime of individual photons. Because

the curvature of spacetime causes the focussing of a bundle of geodesics, this

focussing also applies to a wave. As the photon progresses, the cross sectional

area of the wave associated with it will decrease. However, in quantum mechan-

ics properties such as angular momentum are computed by an integration of a

radial coordinate over the volume of the wave. If the cross sectional area of the

wave decreases, then the angular momentum will also decrease. However, an-
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Table 1: Published papers

Year Reference Major topic

1975 Nature, 254, 313 First mention of photon extent and gravity

1979 Nature, 277, 633 Photon decay near the sun: limb effecta

1987 Aust. J. Phys.40, 440 First mention of curvature redshiftb

1987 Aust. J. Phys., 40, 459 Application to background X-rays

1991 Astrophysical Journal, 377, 1 More on curvature redshift and applications

1993 Astrophysical Journal, 410, 488 A static stable universe: Newtonian cosmology

1995 Astrophysical Journal, 440, 466 Angular size of radio sources

1995 Astrophysical Journal, 441, 488 Quasar distribution

1999 Aust. J. Phys., 52, 753 Curvature pressure and many other topics

2006 Book (Crawford, 2006) ”Curvature Cosmology”

2008 Web site c Major updated of the book

aNot only is the theory discredited but also the observations have not stood

the test of time.

bThis gives the equation for photons but not for non-zero rest mass particles.

chttp://www.davidcrawford.bigpondhosting.com

dSuperseded by this paper.
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gular momentum is a quantized parameter that has a fixed value. The solution

to this dilemma is that the photon splits into two very low-energy photons and

a third that has the same direction as the original photon and nearly all the

energy. It is convenient to consider the interaction as a primary photon losing a

small amount of energy into two secondary photons. Averaged over many pho-

tons this energy loss will be perceived as a small decrease in frequency. Since

in quantum mechanics electrons and other particles are considered as waves,

a similar process will also apply. It is argued that electrons will interact with

curved spacetime to lose energy by the emission of very low-energy photons.

2.1.1 Photons in Curved Spacetime

Einstein’s general theory of relativity requires that the metric of spacetime be

determined by the distribution of mass (and energy). In general this spacetime

will be curved such that in a space of positive curvature nearby geodesics that

are initially parallel will come closer together as the reference position moves

along them. This is directly analogous to the fact that on the earth lines of

longitude come closer together as they go from the equator to either pole. In

flat spacetime, the separation remains constant. For simplicity, let us consider

geodesics in a plane. Then the equation for geodesic deviation can be written

Misner, Thorne & Wheeler (1973), p 30 as

d2ξ

ds2
= − ξ

a2
,

where ξ is normal to the trajectory and s is measured along the trajectory. The

quantity 1/a2 is the Gaussian curvature at the point of consideration. For a

surface with constant curvature, that is the surface of a sphere, the equation

is easily integrated to get (ignoring a linear term) ξ = ξ0 cos(s/a). Note that
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this equation also describes the separation of lines of longitude as we move

from the equator to either pole. Now geodesics describe the trajectories of

point particles. Null-geodesics are associated with mass-less particles. However,

photons are not point particles. The experiment of using single photons in a

two-slit interferometer shows that individual photons must have a finite size.

Quantum mechanics requires that all particles are described by wave functions

and therefore we must consider the propagation of a wave in spacetime. Because

photons are bosons, the usual quantum mechanical approach is to describe the

properties of photons by creation and destruction operators. The emphasis

of this approach is on the production and absorption of photons with little

regard to their properties as free particles. Indeed because photons travel at

the speed of light, their lifetime in their own reference frame between creation

and destruction is zero. However, in any other reference frames they behave

like normal particles with definite trajectories and lifetimes. Havas (1966) has

pointed out that the concept of a single photon is rather tenuous. There is no

way we can tell the difference between a single photon and a bundle of photons

with the same energy, momentum, and spin. However, it is an essential part of

this derivation that a single photon has an actual existence.

Assume that a photon can be described by a localized wave packet that has

finite extent both along and normal to its trajectory. This economic description

is sufficient for the following derivation. We define the frequency of a photon as

ν = E/h and its wavelength as λ = hc/E where E is its energy. These definitions

are for convenience and do not imply that we can ascribe a frequency or a

wavelength to an individual photon; they are properties of groups of photons.

The derivation requires that the wavelength is short compared to the size of
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the wave packet and that this is short compared to variations in the curvature

of spacetime. Furthermore, we assume that the rays of any wave follow null

geodesics and therefore any deviations from flat spacetime produce change in

shape of the wave packet. In other words, since the scale length of deviations

from flat space are large compared to the size of the wave packet they act as a

very small perturbation to the propagation of the wave packet.

Consider a wave packet moving through a spacetime of constant positive

curvature. Because of geodesic deviation, the rays come closer together as the

wave packet moves forward. They are focussed. In particular the direction θ, of

a ray (geodesic) with initial separation ξ0 after a distance s is (assuming small

angles)

θ = −sξ0

a2
,

where a is the local radius of curvature. Since the central geodesic is the direc-

tion of energy flow, we can integrate the wave-energy-function times the com-

ponent of θ normal to the trajectory, over the dimensions of the wave packet

in order to calculate the amount of energy that is now travelling normal to the

trajectory. The result is a finite energy that depends on the average lateral

extension of the wave packet, the local radius of curvature, and the original

photon energy. The actual value is not important but rather the fact that there

is a finite fraction of the energy that is moving away from the trajectory of the

original wave packet. This suggests a photon interaction in which the photon

interacts with curved spacetime with the hypothesis that the energy flow nor-

mal to the trajectory goes into the emission of secondary photons normal to its

trajectory. From a quantum-mechanical point of view, there is a strong argu-

ment that some interaction must take place. If the spin of the photon is directly
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related to the angular momentum of the wave packet about its trajectory then

the computation of the angular momentum is a similar integral. Then because

of focussing the angular momentum clearly changes along the trajectory, which

disagrees with the quantum requirement that the angular momentum, that is

the spin, of the photon is constant. The Heisenberg uncertainty principle re-

quires that an incorrect value of spin can only be tolerated for a finite time

before something happens to restore the correct value. We now consider the

consequences.

Consider motion on the surface of a three dimensional sphere with radius

r. As described above, two adjacent geodesics will move closer together due to

focussing. Simple kinematics tells us that a body with velocity v associated with

these geodesics has acceleration v2/r, where r is the radius of curvature. This

acceleration is directly experienced by the body. In addition, it experiences a

tidal acceleration within itself. This tidal acceleration is equivalent to the fo-

cussing of the geodesics. Although the focussing and acceleration are closely

linked, we need to consider whether the occurrence of one implies the occur-

rence of the other. Does the observation of focussing (tidal acceleration) imply

acceleration in the orthogonal direction? It is true in two and three dimensions,

but it needs to be demonstrated for four dimensions.

The geometry of a three dimensional surface with curvature in the fourth

dimension is essentially the same as motion in three dimensions except that the

focussing now applies to the cross-sectional area and not to the separation. Does

this acceleration have the same physical significance? Assuming it does, a wave

packet that is subject to focussing has acceleration in an orthogonal dimension.

For instance if we could constrain a wave packet (with velocity c) to travel on
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the surface of a sphere in three dimensions it would not only show a focussing

effect but also experience an acceleration of c2/r normal to the surface of the

sphere. Then a wave packet (and hence a photon) that has its cross-sectional

area focussed by curvature in the fourth dimension with radius r would have an

energy loss rate proportional to this acceleration. The essence of the curvature-

redshift hypothesis is that the tidal distortion causes the photon to interact and

that the energy loss rate is proportional to c2/r. For a photon with energy E

the loss rate per unit time is cE/r, and per unit distance it is E/r.

In general relativity the crucial equation for the focussing of a bundle of

geodesics was derived by Raychaudhuri (1955), also see Misner et al. (1973)

and Ellis (1984) and for the current context we can assume that the bundle has

zero shear and zero vorticity. Since any change in geodesic deviation along the

trajectory will not alter the direction of the geodesics we need consider only the

cross-sectional area A of the geodesic bundle to get the equation

1
A

d2A

ds2
= −RαβUαUβ = − 1

a2
,

where R is the Ricci tensor (it is the contraction of the Riemann-Christoffel

tensor), U is the 4-velocity of the reference geodesic and a is the local radius of

curvature. This focussing can be interpreted as the second order rate of change

of cross-sectional area of a geodesic bundle that is on the three-dimensional

surface in four-dimensional space. Then if we consider that a photon is a wave

packet we find that the rate at which the photon loses energy per unit distance

is E/a or more explicitly

1
E

dE

ds
= −1

a
= −

(
RαβUαUβ

)1/2
,

What is interesting about this equation is that, for the Schwarzschild (and Kerr)
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solutions for the external field for a mass, the Ricci tensor is zero; hence, there

is no focussing and no energy loss. A geodesic bundle passing a mass such as

the sun experiences a distortion but the wave packet has not changed in area.

Hence, this model predicts that photons passing near the limb of the sun will

not suffer any energy loss due to curvature redshift.

The field equation for Einstein’s general theory of gravitation is

Rαβ = 8πG

(
Tαβ − 1

2
Tgαβ

)
+ Λgαβ ,

where T is the contracted form of Tαβ the stress-energy-momentum tensor, g

is the metric tensor, G is the Newtonian gravitational constant and Λ is the

cosmological constant. It states that the Ricci tensor describing the curvature

of spacetime is determined by the distribution of mass (and energy). Direct

application of the field equations (without the cosmological constant) in terms

of the stress-energy-momentum tensor Tαβ , the metric tensor g and with the

material having a 4-velocity V gives

1
a2

= 8πG

(
TαβUαUβ − 1

2
TgαβVαVβ

)
. (1)

For null geodesics gαβVαVβ is zero which leaves only the first term. For a

perfect fluid the stress-energy-momentum tensor is

Tαβ =
p

c2
gαβ +

(
ρ +

p

c2

)
UαUβ , (2)

where p is the proper pressure and ρ is the density. Combining Eq. 1 with Eq. 2

gives for null geodesics

1
a2

=
8πG

c2

(
ρ +

p

c2

)
.

For cases where the proper pressure is negligible compared to the density we
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can ignore the pressure and get

1
E

dE

ds
= −1

a
= −

(
8πGρ

c2

)1/2

= −1.366 × 10−13√ρ m−1. (3)

For many astrophysical types of plasma, it is useful to measure density by

the equivalent number of hydrogen atoms per cubic metrae: that is we can put

ρ = NmH and get

1
E

dE

ds
= −

(
8πGNMH

c2

)
= −5.588 × 10−27

√
N m−1. (4)

The rate of energy loss per distance travelled depends only on the square root of

the density of the material, which may consist of gas, plasma, or gas and dust.

This equation can be integrated to get

ln(E/E0) =
(

8πGMH

c2

)1/2 ∫ x

0

√
N(x)dx. (5)

2.1.2 Curvature redshift secondary photons

The above derivation does not define the form of energy loss. The most realistic

model is that the photon decays into three secondary photons, one of which

takes nearly all the energy and momentum and two very low-energy secondary

photons. It is convenient (although not strictly correct) to think of the high-

energy secondary as a continuation of the primary but with slightly reduced

energy. Two secondary photons are required to preserve spin and, by symmetry,

they are emitted in opposite directions with the same energy This assumption

that the two secondary photons have the same energy is made without proper

justification. What can be said is that if they are not, they will still have

nearly equal energies because the probability of having one with a much longer

relative wavelength is very low. From symmetry they are ejected at right angles
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to the original trajectory. Thus, the primary photon is not deflected. We

can get an estimate of how often these interactions occur and hence what the

secondary energies are by using the Heisenberg uncertainty principle applied

to the primary. For linear momentum and distance it is ∆p∆x ∼= h/4π, and

putting X = ∆x we get ∆E = hc/4πX. Now after the photon with energy E0

has travelled a distance X the energy-loss is ∆E = E0X/a, and hence

X2 =
ahc

4πE0
=

aλ0

4π
=

cλ0

4π
√

8πGρ
. (6)

If each secondary photon takes half the energy-loss, we find

∆E =
1
2

E0X

a
. (7)

Therefore the secondary photons have a wavelength of

λ =
2aλ0

X
= 8πX = 4

√
πaλ0. (8)

For example consider a visible photon with wavelength 600 nm travelling in

gas with density N , then X = 2.93 × 109N−1/4 m and the wavelength is λ =

7.36×1010N−1/4 m which corresponds to a frequency of ν = 4.07N1/4 mHz Now

for fully ionized plasma the plasma frequency is

νp =
(

Ne2

πme

)1/2

= 8.975N1/2 Hz,

and the ratio is

ν

νp
= 4.55 × 10−4N−1/4.

Thus, for optical photons and all plasmas with densities greater than N =

0.14m−3 the secondary photons have frequencies well below the plasma fre-

quency and therefore cannot propagate but will be quickly absorbed by the

plasma. The energy lost by the primary photon is dissipated into heating the

plasma.
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2.1.3 Inhibition of curvature redshift

From the discussion above it is clear that the process of curvature redshift

requires a gradual focussing to a critical limit, followed by the emission of sec-

ondary photons. It is as if the photon gets slowly excited by the focussing

until the probability of secondary emission becomes large enough for it to oc-

cur. If there is any other interaction the excitation due to focussing will be

nullified. That is, roughly speaking, curvature-redshift interaction requires an

undisturbed path length of at least X (Eq. 6) for significant energy loss to occur.

A suitable criterion for inhibition to occur is that the competing interaction has

an interaction length less than X. Although Compton or Thompson scatter-

ing are possible inhibitors there is another interaction that has a much larger

cross-section. This is the coherent multiple scattering that produces refractive

index.

In classical electro-magnetic theory, the refractive index of a medium is the

ratio of the velocity of light in vacuum to the group velocity in the medium.

However, in quantum mechanics photons always travel at the velocity of light

in vacuum. In a medium, a group of photons appears to have a slower velocity

because the individual photons interact with the electrons in the medium and

each interaction produces a time delay. Because the interaction is with many

electrons spread over a finite volume, the only possible result of each interaction

is the emission of another photon with the same energy and momentum. Now

consider the absorption of a wave. In order to cancel the incoming wave a new

wave with the same frequency and amplitude but with opposite phase must be

produced. Thus, the outgoing wave will be delayed by half a period with respect

to the incoming wave. For example if the phase difference was not exactly half

15



a period for an electro-magnetic wave incident on many electrons, the principle

of conservation of energy would be violated. This simple observation enables us

to compute the interaction length for refractive index n. If L is this interaction

length then it is

L =
λ0

2 |n − 1|
,

where n is the refractive index and the modulus allows for plasma and other

materials where the refractive index is less than unity. Note that L is closely

related to the extinction length derived by Ewald and Oseen (see (Jackson,

1975) or Born & Wolf (1999)) which is a measure of the distance needed for

an incident electromagnetic wave with velocity c to be replaced by a new wave.

For plasmas the refractive index is

n ∼= 1 − Neλ
2
0

2πr0
,

where Ne is the electron density and r0 is the classical electron radius. We can

combine these two equations to get (for a plasma)

L = (Ner0λ0)−1. (9)

Thus, we would expect the energy loss to be inhibited if the average curvature-

redshift interaction distance is greater than that for refractive-index interactions,

i.e. if X > L. Therefore, we can compute the ratio (assuming a plasma with

N ∼= Ne) and using Eq. 6 to get

X/L = 0.0106N3/4λ
3/2
0 (10)

This result shows that curvature redshift will be inhibited if this ratio is greater

than one, which is equivalent to λ0 > 20.7N−1/2 m. For example, curvature

redshift for the 21 cm hydrogen line will be inhibited if the electron density is

greater than about 104 m−3.

16



2.1.4 Possible laboratory tests

It is apparent from the above analysis that to observe the redshift in the labora-

tory we need to have sufficient density of gas (or plasma) to achieve a measurable

effect but not enough for there to be inhibition by the refractive index. The

obvious experiment is to use the Mössbauer effect for γ-rays that enables very

precise measurement of their frequency. Simply put, the rays are emitted by nu-

clei in solids where there is minimal recoil or thermal broadening of the emitted

ray. Since the recoil-momentum of the nucleus is large compared to the atomic

thermal energies and since the nucleus is locked into the solid so that the recoil

momentum is precisely defined, then the γ-ray energy is also precisely defined.

The absorption process is similar and has a very narrow line width. Such an

experiment has already been done by Pound & Snyder (1965). They measured

gravitational effects on 14.4 keV γ-rays from 57Fe being sent up and down a

vertical path of 22.5 m in helium near room pressure. They found agreement

to about 1% with the predicted fractional redshift of 1.5× 10−15, whereas frac-

tional curvature redshift predicted by Eq. 4) for this density is 1.25 × 10−12.

Clearly, this is much larger. At γ-ray frequencies, the electrons in the helium

gas are effectively free and we can use Eq. 9 to compute the refractive index

interaction length. For helium at STP, it is L = 0.077 m, which is much less

than curvature-redshift interaction length which for these conditions is X=11

m. Hence, we do not expect to see any significant curvature redshift in their

results. Pound and Snyder did observe one-way frequency shifts but they were

much smaller than curvature redshift and could be explained by other aspects of

the experiment. However, the Pound and Snyder experiment provides a guide

to a possible test for the existence of curvature redshift. Because curvature

17



redshift has a different density variation to that for the inhibiting refractive in-

dex it is possible to find a density for which curvature redshift is not inhibited.

Although there is a slight advantage in using heavier gases than helium due to

their higher atomic number to atomic weight ratio, their increased absorption

to γ-rays rules them out. Hence, we stay with helium and from Eq. 9 we can

compute curvature-redshift interaction length to be

X = 10.8
(

p0

p

)1/4

m,

where p is the pressure and p0 is the pressure at STP. For the same gas the

refractive index interaction length is

L = 0.077
(

p0

p

)
m.

It follows that the curvature redshift will not be inhibited if X < L or in this

case, the pressure is less that 0.0014p0 which is about 1 mm of Hg. For this

pressure, we find that X = 57 m which requires that the apparatus must be

much longer than 57 m. For argument let us take the length to be 100 m then

the fractional redshift expected is 2.1 × 10−13 which is detectable. The experi-

mental method would use a horizontal (to eliminate gravitational redshifts) tube

filled with helium and with accurately controlled temperature. Then we would

measure the redshift as a function of pressure. The above theory predicts that

if it is free of inhibition then the redshift should be proportional to the square

root of the pressure.

Alternatively, it may be possible to detect the secondary photons. For he-

lium with a pressure of 1 mm Hg the expected frequency of the secondary

radiation is about 100 kHz. The expected power from a 1 Cu source is about

5 × 10−22 W. Unfortunately, the secondary radiation could be spread over a
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fairly wide frequency band which makes its detection somewhat difficult but it

may be possible to detect the radiation with modulation techniques.

Another possibility is to use γ-rays of much shorter wavelength where it

may be possible to detect the secondary radiation in an experiment that did

not try to measure the redshift. For example consider the passage of keV to

Mev gamma rays from radioactive elements or synchrotron sources in air. For air

at a density of 1.20 kg m−3 and with the γ-ray energy E0 in keV the frequency

of the secondaries is derived from Eq. 8 to be

λ = 0.465
(

E0

keV

)1/2

Mhz,

and the gravitational interaction length is

X = 25.66
(

E0

keV

)1/2

m.

Now for there to be no inhibition the gravitational interaction length must be

less than the refractive index interaction length (L) which from Eq. 9 and for

air has the equation

L = 0.7905
(

E0

keV

)
m.

In addition the gamma rays must have a path length greater than X. An

appropriate measure of this path length is the distance over which the number

of γ-rays have been attenuated to half the original number. Table 2 shows these

quantities for a range of primary energies.

Note that the curvature redshift will be inhibited by the attenuation length

until the γ-rays have an energy a bit less than 20 keV. There is no inhibition from

either cause for energies larger than 20 keV. The expected power per gamma

ray per meter of path length is given by

∆P = 7.24 × 10−21

(
E0

keV

)
W m−1.
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Table 2: Curvature redshift in air.

Energy/keV Xa Lb attn. lengthc νd

10 8.11 7.9 1.1 1.47

20 5.74 15.8 7.4 2.08

50 3.63 39.5 27.8 3.29

100 2.57 79.1 37.4 4.65

200 1.81 158.1 44.7 6.58

500 1.15 395.2 66.1 10.4

aGravitational interaction length in metros

bRefractive index interaction length in metros

cDistance to halve beam intensity in metros

dSecondary frequency in Mhz
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Clearly a powerful γ-ray source with energies greater than about 50 keV is

required.

Yet another possible test is to measure the frequency from a spacecraft at

two receivers as a function of the differential distance between the receivers

and the spacecraft. For example in the analysis of the Pioneer 10 acceleration

anomaly (section (3.7) it was shown that the interplanetary dust density could

contribute a measurable frequency shift. Comparison of this frequency shift at

the same time at two receivers at different distances would remove most other

causes of frequency shifts. One advantage of this test is that it does not require

very accurate frequency generation on the satellite. Typically the two receivers

would be two ground stations. The major problem is the uncertainty and indeed

large variation in the density of the exosphere and any other frequency shifts due

to earth rotation that cannot be accurately modelled. Note that at the typical

X-band frequencies inhibition will prevent the neutral atmosphere showing any

curvature-redshift effects.

2.1.5 Interactions for other particles

Since the focussing due to spacetime curvature applies to the quantum wave, it is

expected that electrons and other particles would interact with curved spacetime

in a manner similar to photons. The argument is the same up to Eq. 4 but now

we have to allow for nonzero mass. The problem (not solved here) is to find

a covariant expression that properly describes the energy-momentum loss to

secondary particles and yet preserves the correct normalization of the energy-

momentum 4-vector. An alternate approach is to consider the motion in a local

Minkowskian reference frame. In this case the loss equations (with P0 denoting
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the energy component) are

dP 0

dx
=

β2P 0

ae

dP j

dx
=

P j

ae
, j = 1, 2, 3

where β is the usual velocity ratio, ae is the local radius of curvature for electrons

and as required by normalization and the conservation of proper mass, we have

from Eq. 11

dPα

dx
Pα = 0.

Noting that for a nonzero rest mass particle VαVα = −1. The radius of curva-

ture ae can be evaluated for the simple case of a uniform gas (or plasma) using

equations (1) and (2) to get

ae =
{

8πG

c2

[(
γ2 − 1

2

)
ρ +

p

c2

(
γ2 +

1
2

)]}−1/2

,

where γ = 1/
√

1 − β2. Then with the further simplification of negligible pres-

sure and with the material at rest and where T = (γ − 1) mc2 is the kinetic

energy, the energy loss rate is

1
T

dT

dx
= − 1

ae
= −

{
8πGρ

(
γ2 − 1

2

)
c2

}1/2

β2. (11)

It shows that for nonzero rest mass particles, the energy loss rate has a strong

dependence on velocity, and for extreme relativistic velocities, the fractional

energy-loss rate is proportional to γ. Because of the strong velocity dependence,

the energy loss rate for electrons will be much higher than that for nuclei in any

plasma near thermal equilibrium. In addition, Eq. 11 shows that the energy loss

rate has the same square root dependence on density as the energy loss rate for

photons.
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Since an electron interacts without being absorbed and re-emitted, we do

not expect the same type of inhibition that applies to photons. Instead the

electron slowly gets excited with the addition of energy which it releases as low-

energy photons when it interacts with some other particle. The need to preserve

spin and momentum prevents it from emitting photons without the presence

of another particle. In the cosmic medium, the most likely interactions are

electro-magnetic scattering off other charged particles and the inverse-Compton

effect off 3K background radiation photons. In high temperature plasma the

electromagnetic (Rutherford) scattering is probably dominant since there will

be many small angle deflections with large impact parameters. Thus the model

for curvature redshift of non-photon particles is one in which an excited electron

emits most of its excitation energy as a low-energy photon during the scattering

off another photon, electron or nucleus.

2.2 Derivation of curvature pressure

The hypothesis of curvature pressure is that for moving particles there is a pres-

sure generated that acts back on the matter that causes the curved spacetime.

In this case, curvature pressure acts on the matter (plasma) that is producing

curved spacetime in such a way as to try to decrease the curvature. In other

words, the plasma produces curved spacetime through its density entering the

stress-energy tensor in Einstein’s field equations. The magnitude of the curva-

ture is an increasing function of the plasma density.
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2.2.1 Gravitation is not a force

The phrase gravitational force is not only a popular expression but is endemic

throughout physics. In particular, gravitation is classified as one of the four

fundamental forces with its heritage going back to Newton’s law of gravitation.

I argue that the formulation of gravitation as a force is a misconception. In

both Newtonian theory and general relativity, gravitation is acceleration. To

begin let us examine the original Newtonian gravitation equation

mIa = F = −GMmG

r3
r, (12)

where (following Longair (1991) we identify MI as the inertial mass of the test

object, M as the active gravitational mass of the second object and mG as the

passive gravitational mass of the test object. The vector a is its acceleration and

r is its displacement from the second object. This equation is usually derived

in two steps: first, the derivation of a gravitational field and second, the force

produced by that field on the test mass. By analogy with Coulombs law, the

passive gravitational mass has a similar role to the electric charge.

However many experiments by Eötvös, Pekar & Fekete (1992), Dicke (1964),

and Braginskĭi & Panov (1972) have shown that the passive gravitational mass

is equal to the inertial mass to about one part in 1012. The usual interpretation

of the agreement is that they are fundamentally the same thing. However, an

alternative viewpoint is that the basic equation is wrong and that the passive

gravitational mass and the inertial mass should not appear in the equation. In

this case the correct equation is

a = −GM

r3
r. (13)

Thus, the effect of gravitation is to produce accelerations directly; there is no
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force involved. Some might argue that since the two masses cancel the distinc-

tion is unimportant. On the other hand, I would argue that the application of

Ockham’s razor dictates the use of Eq. 13 instead of Eq. 12.

The agreement of the inertial mass with the passive gravitational mass is

the basis of the weak equivalence principle in that it applies regardless of the

composition of the matter used. Carlip (1998) Shows that it applies to both

the potential and the kinetic energy in the body. The theory of general rela-

tivity is based on the principle of equivalence as stated by Einstein: All local,

freely falling, non-rotating laboratories are fully equivalent for the performance

of physical experiments. The relevance here is that it is impossible to distinguish

between acceleration and a uniform gravitational field. Thus when gravitation

is considered as acceleration and not a force the passive gravitational mass is a

spurious quantity that is not required by either theory.

2.2.2 A Newtonian model

A simple cosmological model using Newtonian physics in four-dimensional space

illustrates some of the basic physics subsequently used to derive the features of

curvature pressure. The model assumes that the universe is composed of gas

confined to the three-dimensional surface of a four-dimensional hypersphere.

Since the visualization of four dimensions is difficult let us suppress one of the

normal dimensions and consider the gas to occupy the two-dimensional surface

of a normal sphere. From Gauss’s law (i.e. the gravitational effect of a spherical

distribution of particles with radial symmetry is identical to that of a point

mass equal in value to the total mass situated at the center of symmetry) the

gravitational acceleration at the radius r of the surface is normal to the surface,
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directed inward and it has the magnitude

r̈ = −GM

r2
,

where M is the total mass of the particles and the dots denote a time derivative.

For equilibrium, and assuming all the particles have the same mass and velocity

we can equate the radial acceleration to the gravitational acceleration and get

the simple equation from celestial mechanics of

v2

r
=

GM

r2
.

If there is conservation of energy, this stable situation is directly analogous to

the motion of a planet about the sun. When there is a mixture of particles with

different masses, there is an apparent problem. In general, particles will have a

distribution of velocities and the heavier ones can be expected to have, on aver-

age, lower velocities. Thus, equilibrium radii will vary with the velocity of the

particles. However, the basis of this model is that all particles are constrained

to have the same radius regardless of their mass or velocity with the value of

the radius set by the average radial acceleration. Thus for identical particles

with a distribution of velocities we average over the squared velocities to get

⟨
v2

⟩
=

GM

r
. (14)

If there is more than one type of particle with different masses then we invoke

the precepts of Section 2.2.1 and average over the accelerations to get the same

result as Eq. 14. The effect of this balancing of the accelerations against the

gravitational potential is seen within the shell as a curvature pressure that is

a direct consequence of the geometric constraint of confining the particles to a

shell. If the radius r decreases then there is an increase in this curvature pressure
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that attempts to increase the surface area by increasing the radius. For a small

change in radius in a quasi-equilibrium process where the particle velocities do

not change the work done by this curvature pressure (two-dimensions) with an

incremental increase of area dA is pcdA and this must equal the gravitational

force times the change in distance to give

pcdA =
GM2

r2
dr,

where M =
∑

mi with the sum going over all the particles. Therefore, using

Eq. 14 we can rewrite the previous equation in terms of the velocities as

pcdA =
M

⟨
v2

⟩
r

dr.

Now dA/dr = 2A/r, hence the two-dimensional curvature pressure is

pc =
M

⟨
v2

⟩
2A

.

Thus in this two-dimensional model the curvature pressure is like the average

kinetic energy per unit area. This simple Newtonian model provides a guide as to

what the curvature pressure would be in the full general relativistic model. The

essential result is that there is a curvature pressure that is due to the constraint

of requiring all the particles to stay within the two-dimensional surface.

2.2.3 General relativistic model

In deriving a more general model in analogy to the Newtonian one, we first

change dA/dr = 2A/r to dV/dr = 3V/r and secondly we include the correction

γ2 needed for relativistic velocities. The result is

pc =
M

⟨
γ2β2

⟩
c2

3V
=

⟨
γ2 − 1

⟩
Mc2

3V
.
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In this case the constraint arises from the confinement of all the particles within a

three-dimensional hyper-surface. Now we expect to be dealing with fully ionized

high temperature plasma with a mixture of electrons, protons, and heavier ions

where the averaging is done over the accelerations. Define the average density

by ρ = M/V then the cosmological curvature pressure is

pc =
1
3

⟨
γ2 − 1

⟩
ρc2. (15)

In effect, my hypothesis is that the cosmological model must include this cur-

vature pressure as well as thermodynamic pressure. Note that although this has

a similar form to thermodynamic pressure it is quite different. In particular, it is

proportional to an average over the squared velocities and the thermodynamic

pressure is proportional to an average over the kinetic energies. This means

that, for plasma with free electrons and approximate thermodynamic equilib-

rium, the electrons will dominate the average due to their much larger velocities.

From a Newtonian point of view, curvature pressure is opposed to gravitational

mutual acceleration. In general relativity, the plasma produces curved space-

time through its density entering the stress-energy tensor in Einstein’s field

equations. Then the constraint of confining the particles to a three-dimensional

shell produces a pressure whose reaction is the curvature pressure acting to de-

crease the magnitude of the curvature and hence decrease the density of the

plasma.

For high temperature plasma in equilibrium, the Jüttner distribution can be

used to evaluate the curvature pressure. For a gas with temperature T and for

molecules with mass m, de Groot et al. (1980) showed that

γ2 (α) = 3αK3(1/α)/K2(1/α), (16)
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where α = kT/mc2 and Kn(1/α) are the modified Bessel functions of the second

kind Abramowitz & Stegun (1972). For small, α this has the approximation

γ2(α) = 1 + 3α + 152α2 + 458α3 + . . . . (17)

For a Maxwellian (non-relativistic) distribution, the first two terms are exact

and the α2 term is the first term in the correction for the Jüttner distribution.

2.2.4 Local curvature pressure

For the universe, the calculation of curvature pressure is simple because of the

constant curvature and homogeneous medium. However, for a localized region

such as a star with inhomogeneous medium and curvature the calculation is

much more difficult. We start with the premise that it is the motion of particles

that reacts back on the material producing the curvature by producing a pres-

sure that tends to reduce the curvature. The problem is that the calculation

of the curvature at any point requires the integration of Einstein’s equations

of general relativity. Then if the particles’ motion produces a reaction force,

the problem is to determine how that reaction force is apportioned amongst

the matter that produces the curvature. One approach that is valid for most

astrophysical applications where the spacetime curvature is small is to use the

Newtonian approximation. Let a, be the effective radius of curvature of the

four dimensional space where the particles’ are constrained. Then the premise

is that this constraint produces an acceleration due to curvature (assuming for

the moment that there is only one type of particle) of

gc =

⟨
v2

⟩
a

,
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where the angular brackets denote an averaging over all the velocities. Now

consider a spherically symmetric distribution of gas. If the distribution is static,

the central gravitational attraction is balanced by some pressure pg, so that

dpg

dr
= −ρ(r)g(r),

where ρ (r) is the density at radius r and g(r) is the gravitational acceleration

at r. Similarly, we define a curvature pressure by

dpc

dr
= −ρ(r)gc(r). (18)

However, if there is a mixture of particles there is an important difference.

Because electrons have a much lighter mass than ions the velocity average for

mixed particles (provided the gas is ionized) will be dominated by the electrons

and the appropriate density to use in Eq. 18 is that for the electrons. Now the

curvature radius a, is given by Eq. 3, and for a gas with relativistic particles we

put ⟨
v2

⟩
=

⟨
γ2 − 1

⟩
c2.

We need to include a factor of one third because only the velocity component

orthogonal to the direction of the acceleration is relevant. Then the curvature

pressure acceleration is

gc(r) =
1
3

⟨(
γ2 − 1

)√
ρ(r)

⟩
c2

√
8πG

c2
,

and

dpc

dr
= −1

3

⟨
(γ2 − 1)

√
ρ(r)

⟩
c2

√
8πG

c2
ρ(r). (19)

Since the hypothesis is that this curvature pressure is a reaction to the accel-

erations produced by the gas at radius r, the averaging over velocities must be
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over all the gas that is being accelerated. By Gauss’s law and symmetry this is

the gas with radii greater than r thus we get

⟨(
γ2 − 1

) √
ρ(r)

⟩
=

∫ ∞
r

N(r̂)r̂2(γ2 − 1)
√

ρ(r̂) dr̂∫ ∞
r

N(r̂)r̂2 dr̂
,

where N(r) is the particle number density. Now for plasmas where the temper-

atures less than about 108 K we can use Eq. 17 to get

1
3

⟨
γ2 − 1

⟩
=

kT

mec2
.

Hence the working equation for local curvature pressure is

dpc

dr
= −k

⟨
T (r)

√
ρ(r)

⟩ √
8πG

c2
ρ(r),

where the function in angular brackets is

⟨
T (r)

√
ρ(r)

⟩
=

∫ ∞
r

Ne(r̂)r̂2T (r̂)
√

ρ(r̂) dr̂∫ ∞
r

Ne(r̂)r̂2 dr̂
,

and Ne(r) is the electron number density.

A theory of curvature pressure in a very dense medium where quantum me-

chanics dominates and where general relativity may be required is needed to

develop this model. Nevertheless, without such a theory, we expect the pres-

sure to be proportional to the local gravitational acceleration and an increasing

function of the temperature of the particles. Thus, we might expect a curvature

pressure that would resist a hot compact object from collapsing to a black hole.

Because of the energy released during collapse, it is unlikely for a cold object

to stay cold enough to overcome the curvature pressure and collapse to a black

hole.
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2.3 The curvature cosmological model

Curvature cosmology can now be derived by including curvature redshift and

curvature pressure into the equations of general relativity. This is done by using

homogeneous isotropic plasma as a model for the real universe. The general

theory of relativity enters through the Friedmann equations for a homogeneous

isotropic gas. Although such a model is simple compared to the real universe,

the important characteristics of CC can be derived by using this model. The

first step is to obtain the basic relationship between the density of the gas

and the radius of the universe. The inclusion of curvature pressure is not only

important in determining the basic equations but it also provides the necessary

means of making the solution static and stable. Then it is shown that the effect

of curvature redshift is to produce a redshift that is a function of distance, and

the slope of this relationship is (in the linear limit of small distances) the Hubble

constant.

The first-order model considers the universe to be a gas with uniform density

and complications such as density fluctuations, galaxies, and stars are ignored.

In addition, we assume (to be verified later) that the gas is at high temperature

and is fully ionized plasma. Because of the high symmetry, the appropriate

metric is the one that satisfies the equations of general relativity for a homo-

geneous, isotropic gas. This metric was first discovered by A. Friedmann and

fully investigated by H. P. Robertson and A. G. Walker. The Robertson-Walker

metric for a space with positive curvature can be written (Rindler, 1977) as

ds2 = c2dt2 − [R(t)]2
[

dr2

1 − r2
+ r2

(
dθ2 + sin2(θ)dφ2

)]

where ds is the interval between events, dt is time, R(t)dr is the comoving
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increment in radial distance, R(t) is the radius of curvature and R0 is the value

of R(t) at the present epoch.

2.3.1 The Friedmann equations

Based on the Robertson-Walker metric, the Friedmann equations for the ho-

mogeneous isotropic model with constant density and pressure are (Longair,

1991)

R̈ = −4πG

3

(
ρ +

3p

c2

)
R +

1
3
ΛR, (20)

Ṙ2 =
8πG

3
ρR2 − c2 +

1
3
ΛR2. (21)

where R is the radius, ρ is the proper density, p is the thermodynamic pressure,

G is the Newtonian gravitational constant, Λ is the cosmological constant, c is

the velocity of light and the superscript dots denote time derivatives. Working

to order of me/mp thermodynamic pressure may be neglected but not curvature

pressure. How to include curvature pressure is not immediately obvious. The

thermodynamic pressure appears only as a relativistic correction to the inertial

mass density whereas curvature pressure is closer in spirit to the cosmological

constant. My solution is to include curvature pressure (with a negative sign)

with the thermodynamic pressure and to set the cosmological constant to zero.

This is an ad hoc variation to general relativity and its only justification is that

it provides sensible equations and show good agreement with observations. In-

cluding curvature pressure from Eq. 15 and from Eq. 20 the modified Friedmann

equations are

R̈ = −4πGρ

3
[
1 −

⟨
γ2 − 1

⟩]
R, (22)

Ṙ2 =
8πGρ

3
R2 − c2. (23)
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(24)

Clearly there is a static solution if < γ2 − 1 >= 1, in which case R̈ = 0. The

second equation, with Ṙ = 0 provides the radius of the universe which is given

by

R =

√
3c2

8πGρ
=

√
3c2

8πGMHN
. (25)

Thus, the model is a static cosmology with positive curvature. Although the

geometry is similar to the original Einstein static model, this cosmology differs

in that it is stable. The basic instability of the static Einstein model is well

known (Tolman, 1934; Ellis, 1984). On the other hand, the stability of CC is

shown by considering a perturbation ∆R, about the equilibrium position. Then

the perturbation equation is

∆R̈ =
3c2

4πR0

(
d⟨γ2 − 1⟩

dR

)
∆R. (26)

For any realistic equation of state for the cosmic plasma, the average velocity

will decrease as R increases. Thus the right hand side is negative, showing that

the result of a small perturbation is for the universe return to its equilibrium

position. Thus, CC is intrinsically stable. Of theoretical interest is that Eq. 26

predicts that oscillations could occur about the equilibrium position.

2.3.2 Temperature of the cosmic plasma

One of the most remarkable results of CC is that it predicts the temperature of

the cosmic plasma from fundamental constants. That is the predicted temper-

ature is independent of the density and independent of any other characteristic

of the universe. For a stable solution to Eq. 22 we need that < γ2−1 >= 1, (i.e.

< γ2 >= 2) where the average is taken over the electron and nucleon number
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densities, that is for equal numbers of electrons and protons

⟨
γ2

⟩ ∼= 0.5
⟨
γ2
e + γ2

p

⟩
,

where the terms on the right are for electrons and protons. Provided the tem-

peratures are small enough for the proton’s kinetic energy to be much less than

its rest mass energy, we can put
⟨
γ2
p

⟩
= 1 and thus for pure hydrogen, the result

is
⟨
γ2
e

⟩
= 3. Using a more realistic composition that has 8.5% by number (Allen,

1976) of helium we find that
⟨
γ2
e

⟩
= 2.927. Hence using Eq. 16 the predicted

electron temperature is 2.56× 109 K. For this temperature
⟨
γ2
p

⟩
= 1.0007. This

shows that the temperature is low enough to justify the assumption made earlier,

that the proton’s kinetic energy is much smaller than its rest mass energy.

To recapitulate the stability of CC requires that R̈ = 0. This requires that

the plasma has the precise temperature that makes < γ2 − 1 >= 1. The basis

for this result is that curvature pressure exists and critical to its derivation is

the averaging over accelerations and not over forces. This is where the assertion

that gravitation is acceleration and is not a force is important.

2.3.3 Hubble constant: theory

The Hubble constant is proportional to the local energy loss rate given by

Equation(4 which gives

H =
c

E

DE

des
= (8πGMHN)1/2

= 1.671 × 10−18N1/2 m−1

= 51.69N1/2 kms−1 Mpc−1. (27)
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The usual redshift parameter z is defined in terms of the wavelengths, frequen-

cies and energies as

z =
λ0

λe
− 1 =

νe

ν0
− 1 =

Ee

E0
− 1. (28)

If the plasma density is constant then we can integrate the energy loss along

the path to get

z = exp
(

Hr

c

)
− 1, (29)

where r is the distance travelled.

2.3.4 Geometry of CC

The Robertson-Walker metric shown in Eq. 20 is not in the simplest form that

explicitly shows the geometry. Following D’Inverno (1992) we can introduce a

new variable χ, where r = R sinχ and the new metric is

ds2 = c2dt2 − R2
[
dχ2 + sin2 χ

(
dθ2 + sin2 θdϕ2

)]
.

In this metric the distance travelled by a photon is Rχ , and since the velocity of

light is a universal constant the time taken is Rχ/c. There is a close analogy to

motion on the surface of the earth with radius R. Light travels along great circles

and χ is the angle subtended along the great circle between two points. The

geometry of this CC is that of a three-dimensional surface of a four-dimensional

hypersphere. For this geometry the area of a sphere with radius R is given by

A(r) = 4πR2 sin2(χ).

The surface is finite and χ can vary from 0 to π. Integration of this equation

with respect to χ gives the volume V , namely,

V (r) = 2πR3

[
χ − 1

2
sin(2χ)

]
.
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Clearly the maximum volume is 2π2R3 and we can using Eq. 25 to get R we

have

R =

√
3c2

8πGMHN

= 3.100 × 1026N1/2 m

= 10.05N1/2 Gpc. (30)

Examination of Equations (27) and (30) shows that there is a simple rela-

tionship between R and H, namely

H =
√

3c

R
. (31)

The next step is to replace r in Eq. 29 with r = Rχ to get

z = exp(
√

3χ) − 1,

and

χ =
ln (1 + z)√

3
. (32)

This is the fundamental relationship between z and χ. Since the geometry of

CC does not involve a time coordinate, it is much simpler than that for BB.

The key equations define the CC geometry are Eq. 31 which defines the radius

of the universe in terms of the Hubble constant and Eq. 32 which defines the

distance variable χ in terms of the redshift parameter z. We now examine some

topics that are relevant practical applications.

2.3.5 Luminosities and magnitudes

Let a source have a luminosity L(ν) (W Hz−1) at the emission frequency ν. Then

if energy is conserved, the observed flux density (W m−2 Hz−1) at a distance
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parameter χ is the luminosity divided by the area, which is

S(ν)dν =
L(ν) dν

4π (R sin(χ))2
.

However, because of curvature redshift there is an energy loss such that the

received frequency ν0 is related to the emitted frequency νe by Eq. 28. Including

this effect the result is

S(ν0)dν0 =
L(νe) dνe

4π (R sin(χ))2 (1 + z)
.

The apparent magnitude is defined as m = −2.5 log(S) where the base of the

logarithm is 10 and the constant 2.5 is exact. Since the absolute magnitude is the

apparent magnitude when the object is at a distance of 10 pc (3.0857×1017 m),

the flux density at 10 pc is

S10(ν0) dν0 =
L(ν0)dν0

2π(10pc)2
,

where because 10 pc is negligible compared to R, approximations have been

made. The flux density ratio is

S(ν0)
S10(ν0)

=
{

10pc

R sin(χ)

}2 {
L(νe)dνe

L(ν0)dν0

}{
1

1 + z

}
.

Defining M as the absolute magnitude and putting νe = (1 + z)ν0 we get for

(m − M)

m − M = −2.5 log
(

S(ν0)
S10(ν0)

)
= 5 log

{
R sin(χ)

10pc

}
+ Kz(ν0) + 2.5 log(1 + z),

where the K-correction (Rowan-Robertson, 1985; Peebles, 1993; Hogg et al.,

2002) is described in Part 1. Furthermore, we can use Eq. 31 to replace R by

H since

R√
3

=
c

H
=

2.998
h

Gpc,
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where h is the reduced Hubble constant. Hence, we get the distance modulus

µCC = 5 log

[√
3 sin(χ)

h

]
+ 2.5 log(1 + z) + 42.384. (33)

3 Application of Curvature Cosmology

These topics are relevant to CC but are not part of the comparison of CC with

BB. However they are either very important for any cosmology or offer further

observational support for CC.

3.1 Entropy

Consider a stellar cluster or an isolated cloud of gas in which collisions are

negligible or elastic. In either case the virial theorem states that the average

kinetic energy K, is related to the average potential energy V , by the equation

V = V0−2K where V0 is the potential energy when there is zero kinetic energy.

Let U be the total energy then U = K + V = V0 − K . Thus, we get the

somewhat paradoxical situation that since V0 is constant; an increase in total

energy can cause a decrease in kinetic energy. This happens because the aver-

age potential energy has increased by approximately twice as much as the loss

in kinetic energy. Since the temperature is proportional to (or at the least a

monotonic increasing function of) the average kinetic energy it is apparent that

an increase in total energy leads to a decrease in temperature. This explains the

often-quoted remark that a self-gravitationally bound gas cloud has a negative

specific heat capacity. Thus, when gravity is involved the whole construct of

thermodynamics and entropy needs to be reconsidered. One of the common

statements of the second law of thermodynamics is that (Longair, 1991): The
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energy of the universe is constant: the entropy of the Universe tends to a max-

imum, (Feynman et al., 1965): the entropy of the universe is always increasing

or from Wikipedia the second law of thermodynamics is an expression of the

universal law of increasing entropy, stating that the entropy of an isolated sys-

tem which is not in equilibrium will tend to increase over time, approaching a

maximum value at equilibrium.

Now the normal proof of the second law considers the operation of reversible

and non-reversible heat engines working between two or more heat reservoirs.

If we use a self-gravitating gas cloud as a heat reservoir then we will get quite

different results since the extraction of energy from it will lead to an increase

in its temperature. Thus if the universe is dominated by gravity the second law

of thermodynamics needs reconsideration. In addition, it should be noted that

we cannot have a shield that hides gravity. To put it another way there is no

adiabatic container that is beyond the influence of external gravitational fields.

Thus we cannot have an isolated system.

This discussion shows that in a static finite universe dominated by gravity

simple discussions of the second law of thermodynamics can be misleading. The

presence of gravity means that it is impossible to have an isolated system. To

be convincing any proof of the second law of thermodynamics should include

the universe and its gravitational interactions in the proof.

3.2 Olber’s Paradox

For CC, Olber’s Paradox is not a problem. Curvature redshift is sufficient to

move distant starlight out of the visible band. Visible light from distant galaxies

is shifted into the infrared where it is no longer seen. Of course, with a finite
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universe, there is the problem of conservation of energy and why we are not sat-

urated with very low frequency radiation produced by curvature redshift. These

low-energy photons are eventually absorbed by the cosmic plasma. Everything

is recycled. The plasma radiates energy into the microwave background radi-

ation and into X-rays. The galaxies develop from the cosmic plasma and pass

through their normal evolution. Eventually all their material is returned to the

cosmic plasma. Note that very little, if any, is locked up into black holes. Cur-

vature pressure causes most of the material from highly compact objects to be

returned to the surrounding region as high-velocity jets.

3.3 Black holes and Jets

The existence of curvature pressure provides a mechanism that could prevent the

collapse of a compact object into a black hole. A theory of curvature pressure in

a very dense medium where quantum mechanics dominates is needed to develop

this model. Nevertheless, without a full theory we can assume that curvature

pressure will depend on the local gravitational acceleration and it will be an

increasing function of the temperature of the particles. Thus, we might expect

a curvature pressure that would resist a hot compact object from collapsing to

a black hole. Because of the energy released during collapse it is unlikely for

a cold object to stay cold long enough to overcome the curvature pressure and

collapse to a black hole.

What is expected is that the final stage of gravitational collapse is a very

dense object, larger than a black hole but smaller than a neutron star. This

compact object would appear very much like a black hole and would have most

of the characteristics of black holes. Such objects could have large masses and
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be surrounded by accretion discs. Thus, many of the observations that are

thought to show the presence of black hole could equally show the presence of

these compact objects. However, there is one observational difference in that

many of the mass estimates of black holes come from observations of redshifts

from nearby stars. Since part or most of these redshifts may be due to curvature

redshift in the surrounding gas, these mass estimates may need to be revised.

If the compact object is rotating there is the tantalizing idea that curvature

pressure may produce the emission of material in two jets along the spin axis.

This could be the ‘jet engine’ that produces the astrophysical jets seen in stellar-

like objects and in many huge radio sources. Currently there are no accepted

models for the origin of these jets. The postulate here is that the jets are

a property of the compact object and do not come from the accretion disk.

The spinning object provides the symmetry necessary to generate two jets and

curvature pressure provides the force that drives the jets. This mechanism is

applicable to both stellar and galactic size structures.

3.4 Large number coincidences

It is appropriate to have a brief discussion of famous numerical coincidences

in cosmology (Sciama, 1971). First, however we need the results for the size

parameters for the CC universe which are shown in Table 3 where the NH is

the density divided by the mass of a hydrogen atom. The first large number

coincidence is the ratio of the radius of the universe to the classical electron

radius (R/r0). The result is 9.49× 1040 which is to be compared with the ratio

of the electrostatic force to that of the gravitation force between and electron

and a proton. This is 4.3×1038 which being about 200 times smaller than R/r0
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Table 3: Size of CC universe.

Quantity Value SI units

Radius, R 12.5 Gpc 3.86 × 1026 m

Volume, V 2.46 × 1031 pc3 1.14 × 1081 m3

Density, N 1.55 m−3 2.58 × 10−27 kgm−3

Mass, M 2.94 × 1054 kg 2.94 × 1054 kg

Ntotal = NV 1.77 × 1081 1.77 × 1081

shows that it is hardly a coincidence and although interesting probably has little

physical significance.

Sciama (1953, 1971) investigated the use of Mach’s principle and the role

of inertia in general relativity. By direct analogy to Maxwell’s equations, he

derived for rectilinear motion a combination of Newton’s laws of motion and of

gravitation, with the inertial frame determined by Mach’s principle (his italics).

In effect, there is an acceleration term added to Newton’s gravitational equation.

The consequence is that the total energy (inertial plus gravitational) of a particle

at rest in the universe is zero. He further assumed that matter receding with

a velocity greater than that of light makes no contribution. The equivalent

distance in CC is the radius, R. The implication of his theory is that

2πGρR2

c2
≈ 1.

Now using Eq. 30 we get the actual value for the left hand side to be 3/4 and

this value does not depend on the size of the universe. The closeness of this

value to unity suggests that Sciage’s ideas are worthy of further investigation.
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3.5 Solar neutrino production

Since the Homestead mine neutrino detector started operation in the late 1960’s,

its observations have shown a deficiency in the observed intensity of solar neutri-

nos compared to accurate theoretical calculations. This has led to an enormous

activity in the development and testing of solar models. Currently the standard

explanation for the deficiency in the arrival rate of solar neutrinos is that it is

due to neutrino oscillations. Basically the electron neutrinos produced near the

center of the sun are converted into a mix of muon and tau neutrinos by the

time they reach the earth. Because of the high densities the matter oscillation

as well as vacuum oscillations are important. Although there are several free

parameters that must be estimated the most convincing evidence comes from

the Sudbury Neutrino Observatory, where the solar neutrino problem was finally

solved. There it was shown that only 34% of the electron neutrinos (measured

with one charged current reaction of the electron neutrinos) reach the detector,

whereas the sum of rates for all three neutrinos (measured with one neutral cur-

rent reaction) agrees well with the expectations. The only reason that I include

the following, alternative explanation is that I was surprised at how accurate

were the results predicted by curvature pressure with no additional parameters.

Since this is the only place where local curvature pressure is used it is feasible

that its derivation in section is flawed. Nevertheless Because it provides accu-

rate predictions and the neutrino oscillation model has to fit several parameters

it is worth examination.

The solar model used here is based on that described by Bahcall (1989).

For a local context, curvature pressure is given by Eq. 19. What was done

is to use the tables (for solution BS05) generously provided by Bahcall in his
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Table 4: Computed production rates for solar neutrinos for the standard model

including curvature pressure.

Reaction Relative Rate Rate/SNU Rate/SNU

rate /cm2 s−1 for 37Cl for 71Ga

pp 0.829 4.93 × 1010 0.0 57.8

pep 0.767 1.07 × 108 0.17 2.15

7Be 0.537 2.56 × 109 0.64 18.4

8B 0.288 1.45 × 106 1.67 3.48

13N 0.503 2.76 × 108 0.045 1.71

15O 0.349 1.68 × 108 0.115 1.91

17F 0.318 1.79 × 108 0.0 0.03

hep 0.905 8.42 × 103 0.036 0.09

Totals 2.66 ± 0.42 85.6 ± 5.4

web site and used them to calculate curvature pressure. It was then assumed

that the thermodynamic pressure was reduced by the value of the curvature

pressure and then we used the thermodynamic pressure as an index into the

same tables to get the temperature. This largely avoids all the complications of

equations of state and changing compositions. Naturally, this will only work if

the corrections, as they are here, are small. Then this temperature was used as

an index into the neutrino production table to get the production rate for each

of the eight listed reactions. As a calibration and a check, the same program

was used to compute the rates with no curvature pressure. In this test, the

maximum discrepancy from the expected rates was 1.3%.

At a radius of 0.1 solar radii, the reduction in thermodynamic pressure was
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12.5% and the reduction in temperature was 4.1%. The computed rates with

curvature pressure included in the solar model are shown in Table 4. The

standard rates are from Bahcall, Pinsonneau & Basu (2001); Bahcall (1989).

The solar neutrino unit (SNU) is a product of the production rate times the

absorption cross section and has the units of events per target atom per second

and one SNU is defined to be 10−36 s−1. For example for each 71Ga target atom

in the detector the expected event rate due to solar neutrinos for the pp reaction

would be 57.7 × 10−36 s−1. The last row shows the expected event rates for

37Cl and 71Ga target atoms where the uncertainties are proportional to those

provided by Bahcall et al. (2001). Another type of detector uses Cherenkov

light from the recoiling electron that is scattered by the neutrino. Because this

electron requires high-energy neutrinos to give it enough energy to produce the

Cherenkov light this type of experiment is essentially sensitive only to the 8B

neutrinos.

McDonald (2004) provides a list of recent observational results and they are

compared with the predictions in Table 5. The columns show the name of the

experiment, the type of detector, the unit, the predicted rate (with curvature

pressure), the observed rate, and the χ2 of the difference from the predicted

value. The statistical and systematic uncertainties have been added in quadra-

ture to get the observed uncertainty. The result in the last row from SNO is

from the charged current reaction ( νe+d→p+p+e) that is the expected rate if

there are no neutrino oscillations. The agreement is excellent. However, there

may be some biases that could be either theoretical or experimental in origin.

The crucial test requires computation with a solar model that includes curva-

ture pressure so that the more subtle effects are properly handled. The benefit
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Table 5: Comparison of predicted and observed solar neutrino production rates.

Experiment Unit Predicted Observed χ2

Homestead SNU 2.66 ± 0.42 2.56 ± 0.23 0.04

GALLEX+GNO SNU 85.6 ± 5.4 70.8 ± 5.9 3.42

SAGE SNU 85.6 ± 5.4 70.9 ± 6.4 3.08

Kamiokande a 1.45 ± 0.26 2.8 ± 0.38 8.60

Super-Kamiokande a 1.45 ± 0.26 2.35 ± 0.08 10.95

SNO ( e+d) a 1.45 ± 0.26 1.76 ± 0.10 0.25

a106 cm−2 s−1

of this agreement is that it gives very strong support for curvature pressure in

a non-cosmological context.

3.6 Heating of the solar corona

For over fifty years, astrophysicists have been puzzled by what mechanism is

heating the solar corona. Since the corona has a temperature of about 2×106 K

and lies above the chromosphere that has a temperature of about 6000K, the

problem is where the energy comes from to give the corona this high tempera-

ture. Let us consider whether curvature redshift due to the gas in the corona

can heat the corona via the energy loss from the solar radiation. Aschwanden

(2004) quotes the number distribution of electrons in the corona to be

Ne = 2.99 × 1014r−16 + 1.55 × 1014r−6 + 3.6 × 1012r−1.5 m−3, (34)

where r is the distance from the solar center in units of solar radii. If we assume

spherical symmetry then all the radiation leaving the sun must pass through
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a shell centrad on the sun and we can use Eq. 4 and Eq. 34 to compute the

fractional energy loss in that shell. To the accuracy required, we can also assume

that the hydrogen number density is the same as the electron density and then

the integration of Eq. 34 from the solar surface to 4 solar radii above the surface

gives a total fractional energy loss of 1.32 × 10−11. Thus with a solar power

output of 3.83 × 1026 W the total energy loss to the solar corona by curvature

redshift is 5.1× 1015 W which is equivalent to 8.3× 10−4 W m−2 at the surface

of the sun. This may be compared with the energy losses from the corona

to conduction, solar wind and radiation. The total loss rates are quoted by

Aschwanden (2004) to be 8×102 Wm−2 for coronal holes, 3×103 W m−2 for the

quiet corona and 104 W m−2 for an active corona. Since these are about seven

magnitudes larger than the predicted loss, curvature redshift is not important

in the inner corona. Although it is not pursued here, there is a similar problem

in that the Milky Way has a corona with a high temperature. It is intriguing

to speculate that curvature redshift may explain the high temperature of the

galactic halo.

3.7 Pioneer 10 acceleration

Precise tracking of the Pioneer 10/11, Galileo and Ulysses spacecraft (Anderson

et al., 1998a, 2002) have shown an anomalous constant acceleration for Pioneer

10 with a magnitude (8.74± 1.55)× 10−10 ms−2 directed towards the sun. The

major method for monitoring Pioneer 10 is to measure the frequency shift of

the signal returned by an active phase-locked transponder. These frequency

measurements are then processed using celestial mechanics in order to get the

spacecraft trajectory. The simplicity of this acceleration and its magnitude sug-
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gests that Pioneer 10 could be a suitable candidate for investigating the effects

of curvature redshift. There is a major problem in that the direction of the

acceleration corresponds to a blue shift whereas curvature redshift predicts a

redshift. Nevertheless, we will proceed, guided by the counter-intuitive obser-

vation that a drag force on a satellite actually causes it to speed up. This is

because the decrease in total energy makes the satellite change orbit with a

redistribution of kinetic and potential energy.

The crucial point of this analysis is that the only information available that

can be used to get the Pioneer 10 trajectory is Doppler shift radar. There is

no direct measurement of distance. Thus the trajectory is obtained by applying

celestial mechanics and requiring that the velocity matches the observed fre-

quency shift. Since the sun produces the dominant acceleration we can consider

that all the other planetary perturbations and know drag effects have been ap-

plied to the observations and the required celestial mechanics is to be simple

two body motion. If the observed velocity (away from the sun) is increased

(in magnitude) by an additional apparent velocity due to curvature redshift the

orbit determination program will compensate by assuming that the spacecraft

is closer to the sun than its true distance. It will be shown that this distance

discrepancy produces an extra apparent acceleration that is directed towards

the sun. The test of this model is whether the densities required by curvature

redshift agree with the observed densities.

Let the actual velocity of Pioneer 10 at a distance r, be denoted by v(r),

then since the effect of curvature redshift is seen as an additional velocity, ∆v(r)

where from Eq. 4 it is given by

∆v(r) = 2
√

8πG

∫ r

0

√
ρ(r) dr (35)
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where the factor of 2 allows for the two-way trip and the density at the distance

r from the sun is ρ(r). Since Pioneer 10 has a velocity away from the sun this

redshift shows an increase in the magnitude of its velocity. We will assume that

all the perturbations and any other accelerations that may influence the Pioneer

10 velocity have been removed as corrections to the observed velocity and the

remaining velocity, v(r), is due to the gravitational attraction of the sun. In

this case the energy equation is

v(r)2 = v2
∞ +

2µ

r
, (36)

where µ = GM is the gravitational constant times the mass of the sun (µ =

1.327 × 1020 m3 s−2) and v∞ is the velocity at infinity. The essence of this

argument is that the tracking program is written to keep energy conserved so

that an anomalous change in velocity, ∆v(r), will be interpreted as a change in

radial distance we get

∆r = −

√
2r3

µ
∆v(r).

Thus an increase in magnitude of the velocity will be treated as a decrease

in radial distance which, in order to keep the total energy constant, implies

an increase in the magnitude of the acceleration. Either by using Newton’s

gravitational equation or by differentiating Eq. 36 the acceleration a(r) is given

by

a(r) = − µ

r2
. (37)

Hence with v∞ = 0 and therefore v(r) =
√

2µ/r we get

∆a(r) =
2µ

r3
∆r =

√
8µ

r3
∆r

and then to the first order an increase in velocity of ∆v(r) will produce an
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apparent decrease in acceleration of ∆a(r), and

∆a = 8
√

πµGr−3/2

∫ r

0

√
ρ(r) dr

= 16
√

πµGr−1/2 <
√

ρ(r) >

= 6.90R−1/2 <
√

ρ(r) > (38)

where for the last equations we measure the distance in AU so that r = 1.496×

1011R and the angle brackets show an average value. Now fig. 7 from (Anderson

et al., 2002) shows that after about 20 AU the anomalous acceleration is essen-

tially constant. The first step is to get an estimate of the required density and

see if is feasible. Using the observed acceleration of aP = 8.74 × 10−10 m s−2

the required average density for the two-way path is 1.60× 10−20R kg m−3 and

for R=20 it is 3.21 × 10−19 kgm−3.

The only constituent of the interplanetary medium that approaches this

density is dust. One estimate by Le Sergeant D’Hendecourt & Lamy (1980) of

the interplanetary dust density at 1 AU is 1.3×10−19 kgm−3 and more recently,

Grün (1999) suggests a value of 10−19 kg m−3 which is consistent with their

earlier estimate of 9.6 × 10−20 kgm−3 (Grün, Zook & Giese, 1985). Although

the authors do not provide uncertainties it is clear that their densities could

be in error by a factor of two or more. The main difficulties are the paucity

of information and that the observations do not span the complete range of

grain sizes. The meteoroid experiment on board Pioneer 10 measures the flux

of grains with masses larger than 10−10 g. The results show that after it left the

influence of Jupiter the flux (Anderson et al., 1998b) was essentially constant

(in fact there may be a slight rise) out to a distance of 18 AU. It is thought

that most of the grains are being continuously produced in the Kuiper belt. As
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the dust orbits evolve inwards due to Poynting-Robertson drag and planetary

perturbations, they achieve a roughly constant spatial density. The conclusion

is that interplanetary dust could provide the required density to explain the

anomalous acceleration by a frequency shift due to curvature redshift.

Anderson et al. (2002) also reports a annual velocity variation of (1.053 ±

0.107)×10−4 m s−1 with a phase angle relative to conjunction of 5◦.7±1◦.7. The

cause of this variation is the changing path length through the dust at about

1 AU as the earth cycles the sun. However if this annual variation is due to

curvature redshift it cannot be easily distinguished from a position displacement

in the plane of the ecliptic: for example this anomalous velocity corresponds

to a position shift of about 5 × 10−3 arcsec. From Eq. (35 and a density of

10−19 kgm−3 the predicted curvature-redshift velocity is 3.9×10−3 ms−1 which

is an order of magnitude larger than the reported anomalous diurnal velocity.

Clearly most of the predicted velocity could have been interpreted by the orbit

determination program as a very small angular displacement. This could also

explain the phase angle. The predicted phase angle is 90◦ from conjunction,

whereas the observed phase angle is very close to the line of conjunction.

Finally Anderson et al. (2002) reports a diurnal component. Reading from

their fig. 18 the diurnal velocity amplitude is about 1.4 × 10−4 m s−1. Note

that due to inhibition there is no curvature redshift to be expected from the

atmosphere. The major redshift will come from the inter-planetary dust. Then

using the earths radius and a density of 10−19 kgm−3 the expected diurnal

velocity amplitude due to curvature redshift is 1.7× 10−7 ms−1 which is three

orders of magnitude too small. The average density that is needed is about

7.2 × 10−14 kgm−3. Unless there is such a density it is unlikely that curvature
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redshift could explain the diurnal velocity effect. Note a critical test would be

to compare the simultaneous observation of the Pioneer 10 velocity from two

tracking stations as a function of their different distances from Pioneer 10.

Overall, this analysis has shown that it is possible to explain the acceleration

anomaly of Pioneer 10 but that a more definitive result requires curvature red-

shift to be included in the fitting program and more accurate estimates of the

dust density are certainly needed. Subject to the caveat about the dust density,

curvature redshift could explain the anomaly in the acceleration of Pioneer 10

(and by inference other spacecraft).

4 Conclusion

Curvature cosmology is a well defined tired-light cosmology which obeys the

perfect cosmological principle. Part 1 and Part 2 showed that is has good

agreement with a wide range of cosmological observations. There are problems

with galactic rotation curves and a lack of a quantitative exposition for the

abundances of light elements. There are possible laboratory tests of the theory

but, at present, there is no definitive observations that would refute the theory.

Curvature pressure can explain the non-cosmological topic of solar neutrino

production but since this already explained by neutrino oscillations it must re-

main a curiosity. The explanation of the Pioneer 10 anomalous acceleration is

feasible if the inter-planetary dust density is a little larger than current esti-

mates.
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