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Abstract. 

 A model formed by massive string and stiff perfect fluid is studied 

in the context of General Relativity. The model is used as a source with 

cylindrically symmetric space-time. To get the deterministic solution in 

terms of cosmic time t, we use Petrov Type I degenerate condition, the 

degeneracy being in yz-plane. The particular case for string dust is also 

discussed. If B = C then it gives unreaslistic solution as in Petrov Type I 

degenerate condition when degeneracy in yz-plane, then B = C is not 

allowed. Anisotropy is maintained in the model throughout, it is due to 

the presence of string. If string disappears then the anisotropy also 

disappears. We have models of a universe that evolve from a massive 

string dominated era to a pure geometric string dominated era. The model 

is in decelerating phase for massive string but represents decelerating and 

accelerating phases both for geometric string. 
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Introduction 

 The generation of stiff fluid solution from a vacuum solution is 

systematically given by Krishinski[1997]. The solution of Einstein's field 

equations are A2 symmetric and whose source is stiff fluid given by 

ρ =  p 

where A2 symmetry implies that there exists two space - like killing 

vector  fields which commute. The equation of state ρ = p was first 

proposed by Zel'dovich[1970] in the study of early universe. The velocity 

of sound is equal to the velocity of light so no material in this universe 

could be more stiff. Such stiffness is conceivable at the very high 

densities just after the big bang. The energy-momentum tensor of non-

rotating 'stiff fluid' is algebraically equivalent to a massless scalar field. 

 Stiff fluid cosmological models create more interest in the study 

because for these models, the speed of light equals to the speed of sound 

and its governing equations have the same characteristic as those of 

gravitational field (Zel'dovich [1970], Barrow [1978]) in his investigation 

has also pointed out that entropy level of the universe makes it likely that 

its initial state was isotropic and quiescent (p = wρ, wε (-1, 0) rather than 

chaotic only if the equation of state for high density matter tends to stiff ρ 

= p (ρ being the matter density, p the isotropic pressure). Keeping in view 
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of  the importance of stiff fluid models, the cosmological models for stiff 

fluid distribution are also investigated by many authors viz. Tabensky and 

Jamorano[1975], Wainwright et al.[1979], Mak and Harko[2001, 2004], 

Bali et al.[2003, 2008] in different contexts. 

 String theory is a theory for calculating scattering amplitudes 

between asymptotic states where the fundamental objects are one 

dimensional string. These amplitudes are found in low-energy limit 

assuming its form as an effective field theory (Fradkin and Tseytlin 

[1985]). 

 The objective of string theory is to promote better understanding of 

the evolution in early stages of universe after its beginning as a singular 

event. The universe passes through a string era and evolves into its 

present state after formation of matter. This suggests the possibility that 

after the formation of matter, the universe might have passed through a 

state with its content in the form of matter with a remnant string cloud as 

a transitory state with energy momentum tensor 

 After the formation of matter, the string cloud in the lemnant form 

may consist of purely geometric strings with energy density same as the 

string tension. There is no reliable information about the equation of state 

of matter in the early stages of evolution of matter. Accordingly, it is 

customary to assign a suitable equation of state for matter and explore the 
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implications on the evolution of the respective cosmic model of universe. 

In this study, we have assumed that the matter distribution in this state to 

be in the form of stiff fluid ρ = p as the equation of state and studied the 

subsequent evolution of the model of universe. Letelier[1983] obtained 

string cosmological models of Bianchi Type-I and Kantowski-Sachs 

space-times stipulating the form of energy-momentum tensor  

jijiij xxvvT λρ −=  with 1−=−= j
i

j
i xxvv  and 0=i

i xv  

 For massive string cloud (with particle attached with string) ρ = ρp 

+ λ. Here ρp and λ devote particle density and string tension respectively.  

 The period of transition of the universe from string era to matter 

era may have witnessed evolution of stresses which may have in the end 

resulted in emergence of isotropic fluid pressure. Accordingly, the 

energy-momentum tensor during this period which saw emergence of 

fluid matter in the presence of remnant string cloud may be described by 

the expression 

( ) jiijjiij xxpgvvpT λρ −++=  

in view of ρ = ρp + λ 

A number of cosmological models to understand the early stage of 

evolution of the universe have been obtained prescribing a stiff fluid as 

equation of state for its matter content. Accordingly, it will be appropriate 
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to stipulate ρ = p as equation of state for the fluid content in the presence 

of remnant string cloud in the universe in its early stages of evolution. We 

also use Petrov Type I degenerate condition which is the next priority 

after equation of state to solve non-linear differential equations. All the 

strings are assumed to be along the same axis because the degeneracy is 

in yz-plane so strings directions are along x-axis. If strings are taken in 

different directions then it will be very difficult to solve non-linear 

differential equations. Therefore directions of the strings are supposed to 

be isotropic keeping in view of modern universe scenario. 

 The grand unified theories (Kibble [1976]; Vilenkin [1981]) predict 

existence of strings in the early universe. String structures account for 

density fluctuations and lead to structure formation in later stages of 

cosmic evolution (Zel'dovich [1980]). Accordingly the string hypothesis 

is expected to lead to cosmological models providing vital clues about 

nature of early cosmic evolution. Stachel[1980] considered a mass less 

(geometric) strings in this respect to examine their relevance in cosmic 

evolution. Later on, several studies (Banerjee et al. [1990], ........ Tikekar 

[1999]) aimed at exploring relevance of cosmological models based on 

string hypothesis have brought out various aspects of early cosmic 

evolution. 
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 In this paper, Bianchi Type I cosmological models describing a 

universe of stiff fluid distribution in the presence of massive strings and 

its role in cosmic evolution are investigated. The degeneracy of Petrov 

type-I condition is assumed in yz-plane. In special case, string dust model 

is considered. The physical and geometrical aspects of the model together 

with singularities are discussed. We also find that the model is in 

decelerating phase for massive string but represents decelerating and 

accelerating phases both for geometric string. 

Petrov Conditions 

 A gravitational field is characterized by Riemann curvature tensor 

and in vacuum is same as conformal Weyl tensor defined as  

  ( )hkijijhkhjikikhjhijkhijk RgRgRgRg
n

RC −−+
−

+=
2

1  

   — ( )ijhkikhj gggg
nn

R
−

−− )2)(1(
                               ...(1) 

Weyl tensor is trace-free tensor in vacuum space times since 

 0== hijk
ij

hk CgC             ...(2) 

 Accordingly, classification of vacuum gravitational field follows 

from that of its Weyl tensor. The classification of gravitational fields 

known as 'Petrov Classification' is very much useful in examining role of 
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free gravitational fields especially as describing field of gravitational 

radiation (Petrov [1969]). 

 For complete determination of physical quantities and realistic 

model, we use that the universe is filled with stiff fluid. It is well 

known that although the nature of expansion in the model at each 

point is determined by the distribution of matter, the model is also 

affected by free gravitational field through its effect on the 

expansion, the vorticity and the shear in the fluid flow. A 

prescription of such a field may therefore be made on an apriority 

basis. We therefore choose the free gravitational field to be Petrov 

Type I degenerate which is the next order in the hierarchy of Petrov 

classification. 

Derivation of Space-time 

 We consider cylindrically symmetric line-element in the form  

 22222222 )( dzCdyBdtdxAds ++−=  ... (3) 

with metric coefficients A, B, C as functions of time t-measured as 

cosmic time by all commoving stationary observers. This form of line-

element was used by Marder[1958] to investigate cylindrical waves to 

find exact solutions representing radiation from infinite cylinder. The 
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energy momentum tensor for perfect fluid distribution in the presence of 

massive string proposed by Letelier[1983] is taken in the form 

 j
i

j
i

j
i

j
i xxpgpT λννρ −++= )(  ... (4) 

with ρ = ρp + λ, νi and xi respectively denote the 4-velocity field of the 

fluid and the string direction, which satisfy 

 1−=−= i
i

i
i xxνν  ... (5) 

 0=i
i xν  ... (6) 

p denotes isotropic fluid pressure, ρ denotes proper energy density and λ 

the string tension density, ρp enters into the stress energy tensor as simply 

an additional dust component. We assume that the co ordinate system is 

co-moving and so that 

 ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= 0,0,0,1,1,0,0,0

A
x

A
iiν  ... (7) 

The Einstein's field equations in the geometrized unit (c=1, G=1) 

 j
i

j
i

j
i TRgR π8½ −=−  ... (8) 

imply the following relations connecting dynamical variables with metric 

parameters : 

 )(81 4444444444
2 λπ −−=⎥⎦

⎤
⎢⎣
⎡ −−++ p

AC
CA

AB
BA

BC
CB

C
C

B
B

A
,     ... (9) 

 p
A
A

C
C

A
π81

4

444
2 −=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+ ,         ... (10) 
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 p
A
A

B
B

A
π81

4

444
2 −=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+ ,         ... (11) 

 πρ81 444444
2 =⎥⎦

⎤
⎢⎣
⎡ ++

BC
CB

AC
CA

AB
BA

A
.       ... (12) 

From equations (10) and (11) it follows that  

 04444 =−
C

C
B

B           ... (13) 

Equation (9) — (12) is a system of four equations relating three metric 

potential A, B, C with three dynamic physical parameters λ, ρ and p. A 

deterministic model of the universe, follows if it is stipulated that the 

universe is filled with stiff fluid (ρ = p) and the free gravitational field is 

Petrov Type-I degenerate with degeneracy in the yz-plane. The 

requirement 13
13

12
12 CC =  implies the following relation 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=−

C
C

B
B

A
A

C
C

B
B 4444444 2 .       ... (14) 

The non-vanishing components of conformal curvature tensor (Chi
jk) for 

the metric (3) have the following explicit expressions: 

⎥
⎦

⎤
⎢
⎣

⎡
−+−+−+== 2

2
4444444444444

2
12

12
34

34 332
6

1
A
A

BC
CB

AB
BA

AC
CA

C
C

B
B

A
A

A
CC ,  ... (15) 

⎥
⎦

⎤
⎢
⎣

⎡
−+−+−+== 2

2
4444444444444

2
13

13
24

24 332
6

1
A
A

BC
CB

AC
CA

AB
BA

B
B

C
C

A
A

A
CC ,   ... (16) 

⎥
⎦

⎤
⎢
⎣

⎡
−+−+==

BC
CB

A
A

A
A

C
C

B
B

A
CC 44

2

2
4444444

2
23

23
14

14 222
6

1 .      ... (17) 
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Using B ≠ C as degeneracy is in yz-plane is assumed in Petrov Type-I 

degenerate condition. It follows from (13) and (14) that 

04 =
A
A  

which implies 

 A = α (a constant). ... (18) 

Equations (11) and (12) together with stiff fluid condition ρ = p imply 

 044444444

4

4 =++++⎟
⎠
⎞

⎜
⎝
⎛

BC
CB

AC
CA

AB
BA

B
B

A
A       ... (19) 

Equations (14) and (18) lead to 

 L
C
BC =⎟
⎠
⎞

⎜
⎝
⎛

4

2  (a constant)        ... (20) 

From equations (18) and (19), we have 

 04444 =+
BC

CB
B

B          ... (21) 

which can be written as 

BC
CB

B
B

BC
CB

C
C

BC
CB

C
C

B
B 44444444444444 2 +=+=++  

which leads to 

0)( 44 =
BC

BC  using (13) and (21)      ... (22) 

To find the solution, we assume that BC = µ and B/C = ν in (3.15) and 

(22). Thus, we have  
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µν

ν L
=4 ,          ... (23) 

 µ44 = 0.          ... (24) 

Equation (24) leads to 

 µ = at + b          ... (25) 

where a and b are constants of integration. 

 From equations (25) and (23), we have 

 aLbatN /)( +=ν          ... (26) 

 Thus, 

 a
L

batNB
+

+==
12 )(µν         ... (27) 

 and 

 a
L

bat
N

C
−

+==
12 )(1/νµ         ... (28) 

On using new coordinates X, Y, Z and T defined by 

Zz
N

YyNTbatXx ===+=
1,,,α  

the metric (3) leads to the form 

 22
2

2
22 dZTdYT

a
dTdXds a

La
a

La −+

++−=       ... (29) 

Physical and Geometric Features 
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 The energy density ρ, the pressure p, the string tension density λ, 

the particle density ρp, the expansion θ and shear tensor σ for the model 

of (29) have following explicit expressions : 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
== 2

22

24
188

T
Lap

α
ππρ ,          ... (30) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

22

24
18

T
La

α
πλ ,          ... (31) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= 2

22

22
18

T
La

p α
πρ ,          ... (32) 

 
T
a
α

θ = ,            ... (33) 

 22

22
2

18
2
T
La

α
σ +

= .           ... (34) 

 The spatial volume R3, the mean Hubble parameter H and 

deceleration parameter q are given by  

 R3 = α2T            ... (35) 

 
T

aHHHH
α3

)(
3
1

321 =++=          ... (36) 

 
2

2
4

44

R
R
R

R

q −= = 2 > 0           ... (37) 

Special model : String Dust Model (ρp=0) as considered by 

Stachel(1980). 
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For massive string, ρ = ρp + λ 

In view of ρp = 0, we have ρ = λ. Now using stiff fluid condition ρ = p, 

equation (9) leads to the following relation: 

 04444444444 =−−++
AC

CA
AB

BA
BC

CB
C

C
B

B   ... (38) 

Use of Petrov Type degeneracy condition in yz-plane (B≠C) in equation 

(14) leads to 

 A = α (constant)  ... (39) 

The equation (38) then implies 

 
BC

CB
BC

BC 4444)(
=  ... (40) 

 We write BC = µ and ν=
C
B . Then equation (40) assumes the form 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2

2
4

2

2
444

4
1

ν
ν

µ
µ

µ
µ  ... (41) 

 In terms of these variables, equation (41) on using (23) leads to 

 
µµ

µ
µ

22
12

22
4

44
L

−=−  ... (42) 

 Equation (42) implies 

 2
12

2

µµ ML
dt
d

+=⎟
⎠
⎞

⎜
⎝
⎛  ... (43) 

 Two cases arise : 

 Case (i) : If L = 0 then 
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 3
4

)( bat +=µ  ... (44) 

where 
4

3,
4

3 NbMa == , with N as a constant of integration. Use of (44) 

in (23) determines 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +−
=

−

a
batL 3

1
)(3expν  ... (45) 

After suitable transformation of coordinates, the metric (3) leads to  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+−=

−−
2

3
1

2
3

1

3
4

2

22
222 3exp3exp dz

a
LTdy

a
LTT

a
dTdxds αα  ... (46) 

where T = at + b. 

The matter density ρ, the string tension λ, the expansion θ, the mean 

Hubble parameter H, the spatial volume R3 and deceleration parameter q 

for the model (46), are given by 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−==

3
8

2

2

2

2 9
16

4
1

T

L
T
a

α
λρ , ... (47) 

 
T
a

α
θ 4
= , ... (48) 

 
T
aH
α9
4

= , ... (49) 

 3
43 TR α= , ... (50) 

 0
8
63

<−=q  ... (51) 

The physical reality requirement ρ > 0 leads to 
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 3
2

2

2

16
T

a
L

<  ... (52) 

Case (ii) : If L ≠ 0 then equation (43) leads to 

 2
122

2

µµ MLf
dt
d

+==⎟
⎠
⎞

⎜
⎝
⎛  ... (53) 

and (23) leads to 

 
2

12 µ

µ
µ

µ
µµν ML

dLd
d
dtLdv

+
==  ... (54) 

 implying 

 ∫
+

=
2

12
log

ττ

τν
ML

Ld  as µ = τ ... (55) 

where M is constant of integration and M > 0. 

Equation (55) can be written as 

 ∫
+

=
−

2
1

2
1

2
1

2
log

ττ

ττν
ML

dL   

which leads to 

 ( )∫ −
=

ξξ
ξξν 22

4log
L
dL  ... (56) 

where 22 2
1 ξτ =+ML  

 = ∫ − 224
L

dL
ξ

ξ  ... (57) 

which leads to 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
L
L

ξ
ξν log2log  

This again leads to 

 
2

2

2

2
1

2
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+
=

LML

LML

τ

τ
ν  ... (58) 

Thus,  

 
2

2

2
2

2
1

2
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+
==

LML

LML
B

τ

τ
τµν  ... (59) 

and 

 
2

2

2
2

2
1

2
1

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+
==

LML

LML
C

τ

τ
τ

ν
µ  ... (60) 

The metric (3) leads to the form 

 2

2

2

2
2

2
222

2
1

2
1

dy
LML

LML
d

d
dtdxds ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+
+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

τ

τ
τµ

µ
α  

 + 2

2

2

2

2
1

2
1

dz
LML

LML
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+

τ

τ
τ  ... (61) 

which again leads to 

 2

2

2

2

2

2
222

2
1

2
1

2
1 dy

LML

LML
ML

ddxds ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+
+⎥
⎦

⎤
⎢
⎣

⎡

+
−=

τ

τ
τ

τ
τα  

 + 2

2

2

2

2
1

2
1

dz
LML

LML
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−+

τ

τ
τ  ... (62) 
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as µ = τ 

 The matter density ρ, the string tension λ, the particle density the 

expansion θ, the shear σ, the mean Hubble parameter (H), the spatial 

volume R3 and deceleration parameter q for the model (62) are given by 

 
2

324
8

τα
πρ M

=  = 8πλ, ρp = 0 ... (63) 

 
ατ

τθ
2

12 ML +
= , ... (64) 

 ( )
2

12
2

2
313

τ
ατ

σ ML
L

+
+

= , ... (65) 

 
ατ

τ
3

2
12 MLH +

= , ... (66) 

 R3 = α2τ , ... (67) 

 2
2

122
1

1

13
MMLL

Mq −
⎟
⎠
⎞⎜

⎝
⎛ +

−=
τατ

 ... (68) 

where M and α are positive constants. 

To Examine Interaction Between Perfect Fluid And String 

 Conservation equation 0; =
j
jiT leads to 

0=Γ−Γ+
∂
∂ h

ij
j

h
j

hj
h

ik

j
i TT

x
T  

which leads to 
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( ) A
A

C
C

B
B

A
Ap

•
•••

•

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
++++ λρρ  

where overhead dot indicate differentiation with respect to t. 

 This shows that there is interaction between perfect fluid and 

string. The conservation law for perfect fluid leads to 

( ) 0=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
++++

•••
•

C
C

B
B

A
Apρρ . The conservation law for string leads to 

A
A

C
C

B
B

A
A •

•••
•

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+++ λρρ . 

Conclusion 

 For the model (29), the reality condition ρ > 0 leads to a > L. The 

model (29) starts with a big bang at T = 0 and the expansion in the model 

decreases as time increases. The energy density ρ → ∞ when T → 0 and 

ρ → 0 when T → ∞. The particle density ρp behaves in the same way as 

energy density ρ. Since ,0≠
θ
σ  therefore, anisotropy is maintained 

throughout. The deceleration parameter q > 0 implies that the model is in 

decelerating phase for massive string. The mean Hubble parameter is 

initially large and decreases as time increases. The model (29) has a point 

type singularity at T = 0 when a > L but has Cigar type singularity at T = 
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0 if a < L (MacCallum 1971). The stiff fluid condition with Petrov Type I 

degenerate condition lead to massive string model. 

 The model (46) starts expanding with a big bang at T = 0 and the 

expansion decreases as T increases. The spatial volume increases as time 

increases indicating inflationary scenario in the cosmic evolution. Thus 

reality condition ρ > 0 is satisfied as indicated by the expression (52). 

Since q < 0, therefore the model (46) represents an accelerating universe. 

Also 0≠
θ
σ , therefore the anisotropy is maintained throughout. The model 

(46) has Barrel Type singularity at T = 0 (MacCallum 1971). 

 The model (62) starts with a bigbang at τ = 0 with its expansion 

decreasing as τ increases. The energy density ρ → ∞, as τ → 0 and ρ → 0 

when τ → ∞. The spatial volume increases as τ increases. Since 

deceleration parameter q < 0, hence the model (62) represents an 

accelerating universe. 0≠
θ
σ  leads to anisotropy is maintained throughout. 

The model (62) has Barrel Type singularity at τ = 0 (MacCallum 1971). 

 The anisotropy is maintained in the models (29) and (62) due to the 

presence of string. As soon as string disappears, the anisotropy also 

disappears (Letelier 1983). Thus we have models of a universe that 
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evolve from a massive string dominated era to a pure geometric string 

dominated era. 

 The condition B = C is not possible case in Petrov Type-I 

degenerate condition when degeneracy is in yz-plane, It also leads to 

unrealistic condition ρ < 0. 
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