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ABSTRACT

We suggest that, with regard to a theory of quantum mind, brain processes
can be described by a classical, dissipative, non-abelian gauge theory. In
fact, such a theory has a hidden quantum nature due to its non-abelian
character, which is revealed through dissipation, when the theory reduces
to a quantum vacuum, where temperatures are of the order of absolute
zero, and coherence of quantum states is preserved. We consider in
particular the case of pure SU(2) gauge theory with a special anzatz for the
gauge field, which breaks Lorentz invariance. In the ansatz, a contraction
mapping plays the role of dissipation. In the limit of maximal dissipation,
which corresponds to the attractive fixed point of the contraction mapping,
the gauge fields reduce, up to constant factors, to the Pauli quantum gates
for one-qubit states. Then tubuline-qubits can be processed in the quantum
vacuum of the classical field theory of the brain, where decoherence is
avoided due to the extremely low temperature. Finally, we interpret the
classical SU(2) dissipative gauge theory as the quantum metalanguage
(relative to the quantum logic of qubits), which holds the non-algorithmic
aspect of the mind.
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Quantum Mind from a Classical Field Theory of the Brain

1. Introduction

Hameroff and Penrose suggested, in their orch. @dem(Hameroff and Penrose, 1996) of the
Quantum Mind, that tubulines in microtubules caniitb superposed states, like qubits, leading to
guantum computation in the brain (Hameroff, 1998).

Influential criticism of the possibility that quamh states can in fact survive long enough in the
thermal environment of the brain has been raiseddayymark (Tegmark, 2000). He estimates the
decoherence time of tubulin superpositions duatieractions in the brain to be less thaft?€ec.
Compared to typical time scales of microtubule peses of the order of milliseconds and more, he
concludes that the lifetime of tubulin superpositiois much too short to be significant for
neurophysiological processes in the microtubule.

In a response to this criticism, Hagan et al. (20€&e shown that a revised version of Tegmark's
model provides decoherence times up to 10 tolB8@c, and it has been argued that this can be
extended up to the neurophysiologically relevamigea of 10 to 100 msec under particular
assumptions of the scenario by Penrose and Hameroff

In this paper, we suggest that tubulines-qubits learprocessed in the quantum vacuum (where
temperatures are of the order of absolute zerocahdrence is maintained) of a classical dissipativ
non-abelian gauge theory of the brain.

In a very recent paper, we considered the partiactdge of a classical SU(2) Yang-Mills theory
(Zizzi and Pessa, 2011, thereafter denoted as Z&B)h a theory has an hidden quantum nature,
due to its non-abelian character. In fact, it eithila quantum vacuum if dissipation is taken into
account. In Z&P, the role of dissipation was playgda contraction mapping in a particular ansatz
for the gauge field, which breaks Lorentz invarianin a limit of the ansatz corresponding to the
attractor, the theory falls in a quantum vacuumer€h the gauge field components reduce to
guantum logic gates of one-qubit states.

The idea of describing brain processes in termsa ékld theory goes back to thel960s, when
Ricciardi and Umezawa (1967) suggested to utilize tormalism of quantum field theory to
describe brain states, with particular emphasisn@mory (the “Quantum Brain Dynamics”
paradigm).

In Quantum Brain Dynamics, the field theory is quam from the start, while in this paper we
consider a classical field theory, and look foitdden quantum features.

The proposal of Ricciardi and Umezawa has goneutircseveral refinements, for example by
Stuart et al. (1978) and by Jibu and Yasue (1998ne more recent progress has been achieved by
Vitiello (1995) by including dissipation. Howevenaking dissipation to agree with quantization is
an hard task, due to the appearance of non-Hemuigerators, and in fact Vitiello’s dissipative
guantum field theory encountered some technicéicdifies. More precisely, the concrete building
of a Dissipative Quantum Field Theory requires raegalization of the usual Quantum Field Theory.
Namely the latter is based on assemblies of hamnostillators, which, in the case of dissipative
processes, should be replaceddbsnped oscillators. Unfortunately the latter do not fulfil the energy
conservation principle, and this fact makes unbddizany attempt to introducing an Hamiltonian-
like formalism. A convenient strategy was introddida Celeghini et al. (1992) and in Vitiello
(2001) where it was described the influence ofssigating environment bgoubling the original
damped system through the introduction of a timerged version of it, which acts as an absorber
of the energy dissipated by the original system.

More recently, Blasone et al. (2001) presentedxam@le of dissipation in a classical system which
explicitly leads, under suitable conditions, toumtum behaviour. They showed that the dissipation
term in the Hamiltonian for a couple of classicahgbed-amplified oscillators manifests itself as a
geometric phase and is actually responsible forajeearance of the zero point energy in the
guantum spectrum of the 1D linear harmonic osailait seems that the our and their lines of



thought have some point in common and are fundaatigmh agreement. Some of the assumptions
made by Blasone et al. were inspired by ‘t Hooftky¢ Hooft, 1999 and 2001) where he discussed
classical, deterministic, dissipative models andwsdd that constraints imposed on the solutions
which introduce information loss resembles a quanstructure. 't Hooft's conjecture is that the
dissipation of information which would occur at & scale in a regime of completely
deterministic dynamics would play a role in the mpuan mechanical nature of our world.

Penrose’s idea of the non algorithmic nature ofnmauatical intuition (Penrose, 1989 and 1994) is
another important feature of his vision of the Quam Mind. Here we support this idea, although
we use quantum metalanguage (Zizzi, 2010) insté#uedirst Godel’s incompleteness theorem.
However, the two approaches are related to eaddr,abimce one takes into account the quantum
version (Zizzi, 2004) of Godel’s theorem, in thgioof quantum information, which derives from a
guantum metalanguage.

The paper is organized as follows:

In Sect. 2, we present the physical model, thahesclassical SU(2) gauge theory, the ansatz,iwhic
breaks Lorentz invariance, and the contraction nmgpplaying the role of dissipation.

In Sect. 3, we show that qubits can be processttigquantum vacuum due to the fact that there the
gauge field components reduce to quantum logicsgle one-qubit states. Due to the very low
temperature of the quantum vacuum, tubuline-quimtaot decohere.

In Sect. 4, we interpret the classical dissipativa-abelian gauge theory of the brain as the quantu
metalanguage, from which originates the quantuneadpnguage of the unconscious, and argue
that quantum metalanguage represents the nontalgar aspect of the mind.

2. The Physical Model

An ansatz was introduced in Z&P, for the classi8d(2) gauge field, which, in a particular limit
corresponding to a vacuum solution, enables omedaver spin ¥2 quantum mechanics. This ansatz
is gauge invariant, but breaks Lorentz invariaf@fecourse the nature of the new vacuum state must
be intrinsically quantum. At this point one mighgkawhich is the physical mechanism that can
trigger this process, which leads to a quantum warcstate of the original classical theory. The
most plausible answer is dissipation. A dissipatystem is characterized by the spontaneous
appearance of symmetry breaking, which in our ¢aghe breaking of Lorentz symmetry. This
vacuum is quantum as all the thermal fluctuatioasehdisappeared because of dissipation, and
qguantum fluctuations dominate. In the limit, theuge field reduces to the generator of a global
U(1), i.e., a phase, times a Pauli matrix, thataisjuantum logic gate of one-qubit state. This
suggests that qubits can be processed in a quardaoum of the classical SU(2) gauge theory.
Given the quantum vacuum is at zero absolute tesmyey, T =0, the qubits do not decohere,
unless they are put in interaction with an extereaVironment. In Z&P dissipation was not
described by any particular model, however its s played by a contraction mapping in the
ansatz. The contraction mapping is related to sgewmnetrical aspects of the gauge theory under
consideration.

2.1. The Ansatz

In Z&P, we considered the SU(2) gauge fielf(x) (u= 0123 a=123) and made the
following ansatz:

Al(x) = gt (2.1)
where A ,(x) is a U(1) gauge field and the® are the Pauli matrices, which satisfy the comnmtat
relations:

[aa,ab] =2ig,, . 0° (2.2)
The ansatz (2.1) explicitly breaks Lorentz invacen

In the following we will consider, in particulahe limit case:



A,(x) -0 (2.3)
In this limit one getsA’(x) - ¢®. In a sense, the SU(2) gauge theory reduces t@uhetum

mechanics of spin Y.
The ansatz (2.1) can be rewritten as:

— Amidy
A, =e (2.4)
where:
A =A0%12 (2.5)
Let us consider the SU(2) gauge transformationfopaed on the original gauge field, :

. P §
A, oy - A, =UAU ! —auaﬂu ! (2.6)
whereg is the gauge coupling constattjs given by:

U =expip®(x)ag?®/2) (2.7)
and p?(x )are three arbitrary real functions.

The ansatz (2.7) transforms under (2.5) as:

e 1Y e =™ —'Euaﬂu = (2.8)
In the limit case (2.3) the transformations (2.8ydme:
e_i/‘# Djj g e_i/‘yl :1_IEU6ﬂU * qy

Eq. (2.9) can be transformed into a pure gaugeitable choice of the arbitrary functiops (x . )
This means that in the limit case the ansatz (®%rribes a vacuum solution.
In the original SU(2) theory invariant under Lorertansformation, the vacuum state V\{@;

corresponding toA, = 0. In presence of the ansatz, which breaks Loremariance, there is, in the
limit case, a new vacuum stpf, corresponding toA, =1.
Then, the gauge field, has a non-vanishing v.e.v. in the new vacuum:

(B|IA|9)#0 (2.10)
Let us take the temporal gaudg = . Then, Eq. (2.10) becomes:
(F|A|9)#0 (i=123) (2)1

This indicates that there is a spontaneous symnibe&gking of the little group O(3), to which are
associated three Goldstone bosgnseach one corresponding to a particular O(3) geaer

2.2. The Contraction M apping as Dissipation
The pure SU(2) gauge theory under considerationbeanescribed in terms of a principal fiber
bundle(P,n, B,G), whereP is the total space is the base space (in our caR®), G (in our case
SU(2)) is the structure group, which is homeomarpghithe fiber spacg, and 7 is the canonical
projection:

m PR (2.12)
For a review on principal fiber bundles see, fatamce, Daniel and Viallet (1980).
The base spacR’ is equipped with the Euclidean metedc

d(x,x) =|x-x (2.13)

wherex and x' are two points oR* and must be intended as= {x#}, x'E{xﬂ'} (u=1234).



The complete metric spa@®@*,d Has an induced topology which is that of the opalts with
rational radiir, = 1 with n a positive integer.
n

The open ball of rational radiug, centred aix’, is:

B, (X) ={xORd(x, ) <r,} 12)
The set of open ball8, (x5 an open covering oR*and forms a local basis for the topology.
Now, let us consider again the ansatz (2.4), arkerttze following natural choice fot,(x) :

i‘x'—x‘
AX)=xe " (2.15)
where A in (2.15) must be intended ds={1,}] (1= 1234).
The pointx is a fixed point forA(x) as it holds:

AX)=X (2.16)
It is easy to check thd(x) continuously approaches for large values ofi:

lim,  A(X) =X (2.17)
The fixed pointx is anattractive fixed point forA(x), as it holds:

() <1 (2.18)

The point X is then a particular kind of attractor for the dyrieal system described by this theory.
Furthermore, it holds:

(x| <1 (2.19)
for all xOB, (x) which is equivalent to say thalt(x) is a contraction mapping in the attraction
basin ofx , that is, it satisfies the Lipschitz condition (dejs and Jeffrey, 1988):

d(A(x),A(x)) < qd(x,x) (2.20)
with g0 (0,1) for every x, X0 B, (x)

3. Qubits Processing in the Quantum Vacuum
The qubit is the unit of quantum information. It quantum analog of the classical{if} , with

the difference that the qubit can be also in aaliriperposition of 0 and 1 at the same time. For a
review on quantum information see, for instancel#éin and Chuang (2000).

The qubit is a unit vector in the 2-dimensional cterHilbert spac€?.
The expression of the qubit is:

Q) =al0)+ A1) (3.1)
where the symbql > is the ket vector in the (bra-ket) Dirac notatiorthe Hilbert space.
The two kets:

0=[g) =) @2

form the orthonormal basis of the Hilbert spa&?, called the computational basis.
The coefficientsa,  are complex numbers called probability amplitudét the constraint:

lal* +|A" =1 (3.3)
to make probabilities sum up to one. (Any quantueasurement of the qubit, either givés with
probability|a|2, or|1) with probability|,6’|2).



The geometrical representation of the qubit cornedpdo the Bloch sphere, which is the spiSére
with unit radius. Formally, the qubit, which is aipt of a two-dimensional vector space with
complex coefficients, would have four degrees aeftom, but the constraint (3.3) and the
impossibility to observe the phase factor redueerthmber of degrees of freedom to two. Then, a
qubit can be represented as a point on the suofaeasphere with unit radius.

The Bloch sphere is defined by:

> = l} (3.4)

i=1

s? :{xi OR®

Any generic 1-qubit state in (3.1) can be rewrithsn
Q) =cos2|o)+esin? (3.5)

where the Euler angle® and ¢ define a point on the unit sph&e.

Thus, any 1-qubit state can be visualized as at poirthe Bloch sphere, the two basis states being
the poles.

We remind that any transformation on a qubit duraagomputational process is a reversible
operation, as it is performed by a unitary operbkor

u'u =1I. (3.6)
whereU " is the Hermitian conjugate &f .
This can be seen geometrically as follows. Any amgit2x2 matrix U on the 2-dimensional

complex Hilbert space&?® (which is an element of the group SU(2) multiplieg a global phase
factor):

| a
=g @ P 3.7)
(where a” is the complex conjugate af), can be rewritten in terms of a rotation of thiedh
sphere:

U, =€’R;(6) (3.8)
where R (8 )is the rotation matrix of the Bloch sphere by agla & about an axis.

In Z&P we showed that the SU(2) gauge field§ reduce to the operatohSwhich, up to a

multiplicative constant, are the product of the eyator of a global U(1) group times the Pauli
matrices:

A? = —ige™ g? (3.9)
This means that the pure SU(2) gauge field thesmeduced to a quantum mechanical theory of
spin ¥z with a constant U(1) “charge”, in absencarof interaction.

The operatoré® in (3.9) are unitary operators, as it holds:

AAst =1 (3.10)
Then, theA? operators can play the role of quantum logic gide®ne-qubit states. In fact, the X,
Y, Z quantum logic gates for one-qubit are justttivee Pauli matrices:

E Y

and the operato® in (3.9) can be rewritten as:

Al =-ige™'X, A?=-ige™Y, A®=-ige™Z. (3.12)
that is, theA? operators are, up to a constant factor and a dhasa, just one-qubit quantum logic
gates.

It should be noticed that th€ operators are not Hermitian. This feature is adtedi of the
dissipative character of the original field theory.



Then, qubits can be processed in the quantum vaatai®@ of a classical dissipative non-abelian
gauge theory, and that decoherence is avoided aabgolute zero temperature of the quantum
vacuum. This means that tubulines-qubits of therémHameroff model of the quantum mind can
take place in this physical model, and moreovey tre protected against decoherence.

4. Quantum M etalanguage: The Non-algorithmic Aspect of the Mind

The arguments discussed in the previous sectioggest that the non-algorithmic aspect of the
mind is hold by a classical, dissipative, non-arelfield theory of the brain. In fact such a theigry
not computable, neither classically, nor quantufre guantum computational aspect is hold by the
guantum mechanical vacuum of that theory (in thamkroff-Penrose model the quantum
computational mode should describe the unconsciolisg classical-computational mode is
obtained after decoherence of superposed quantatesstthrough interaction with the external
world. This mode should correspond to consciousness

In logical terms, as it was shown in Zizzi (201 classical field theory of the brain with hidden
guantum nature is a quantum metalanguage (QML)lewthe quantum mechanics of qubits is the
Quantum Object Language (QOL).

QML is made of assertions, linked in a metalingoisvay. The difference with a classical
metalanguage is that in QML atomic assertions casgertion degrees, which are complex
numbers, interpreted as probability amplitudes.oAlthe QML is equipped with Meta Data,
corresponding to the constraint that probabilisasn up to one. Theeflection principle of basic
logic (Sambin et al. 2000) was used to recover @O QML. By the reflection principle, all the
logical connectives are introduced by solving amatign (calleddefinitional equation), which
“reflects” meta-linguistic links between assertioni® logical connectives between propositions.
The QOL derived from the QML through theflection principle, is made of propositions linked by
guantum connectives, like, for instance, the cotivec‘quantum superposition” (the quantum
analogous of the classical connective “AND”) whisHabelled by complex numbers, and is non-
commutative.

In the limit of maximal dissipation, when the gadgdds reduce to unitary operators, which process
guantum information, we are at the very level & rtéflection principle: QML is processing QOL
whose elements, propositions, are interpreted astgm states.

It should be noticed that a quantum computer (Q& & QOL, and its physical theory is QM.
Therefore, a QC cannot reach a QML (a non-algoiithmode of thought) because it is impossible
to go from the finite number of degrees of freedoim@M to the infinite ones of FT. That is, a
guantum computer will never be able to reach a algorithmic mode of thought. This is the
difference between a quantum mind and a quantunpatem

In summary, we suggested that the mind has thoskesi the non-computational mode (QML), the
guantum-computational mode (QOL) describing the iwa Mind (or unconscious), and the
classical-computational one, describing the ClassiMind (or consciousness). The physical
description of the first mode is a classical Figheory , the second one is Quantum Information, the
third one is Classical Information.
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