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               ABSTRACT
We suggest that, with regard to a theory of quantum mind, brain processes 
can be described by a classical, dissipative, non-abelian gauge theory. In 
fact, such a theory has a hidden quantum nature due to its non-abelian 
character, which is revealed through dissipation, when the theory reduces 
to a quantum vacuum, where temperatures are of the order of absolute 
zero, and coherence of quantum states is preserved. We consider in 
particular the case of pure SU(2) gauge theory with a special anzatz for the 
gauge field, which breaks Lorentz invariance. In the ansatz, a contraction 
mapping plays the role of dissipation. In the limit of maximal dissipation, 
which corresponds to the attractive fixed point of the contraction mapping, 
the gauge fields reduce, up to constant factors, to the Pauli quantum gates 
for one-qubit states. Then tubuline-qubits can be processed in the quantum 
vacuum of the classical field theory of the brain, where decoherence is 
avoided due to the extremely low temperature. Finally, we interpret the 
classical SU(2) dissipative gauge theory as the quantum metalanguage 
(relative to the quantum logic of qubits), which holds the non-algorithmic 
aspect of the mind.

Keywords: Quantum Mind; Non-abelian Gauge Theories; Dissipation; Contraction 
Mappings; Qubits.
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Quantum Mind from a Classical Field Theory of the Brain 
 

1. Introduction 
Hameroff and Penrose suggested, in their orch. OR model (Hameroff and Penrose, 1996) of the 
Quantum Mind, that  tubulines in microtubules can be in superposed states, like qubits, leading to 
quantum computation in the brain (Hameroff, 1998).  
Influential criticism of the possibility that quantum states can in fact survive long enough in the 
thermal environment of the brain has been raised by Tegmark (Tegmark, 2000). He estimates the 
decoherence time of tubulin superpositions due to interactions in the brain to be less than 10-12 sec. 
Compared to typical time scales of microtubule processes of the order of milliseconds and more, he 
concludes that the lifetime of tubulin superpositions is much too short to be significant for 
neurophysiological processes in the microtubule. 
In a response to this criticism, Hagan et al. (2002) have shown that a revised version of Tegmark's 
model provides decoherence times up to 10 to 100 µ sec, and it has been argued that this can be 
extended up to the neurophysiologically relevant range of 10 to 100 msec under particular 
assumptions of the scenario by Penrose and Hameroff. 
In this paper, we suggest that tubulines-qubits can be processed in the quantum vacuum (where 
temperatures are of the order of absolute zero, and coherence is maintained) of a classical dissipative 
non-abelian gauge theory of  the brain. 
In a very recent paper, we considered the particular case of  a classical SU(2) Yang-Mills theory 
(Zizzi and Pessa, 2011, thereafter denoted as Z&P). Such a theory has an hidden quantum nature, 
due to its non-abelian character. In fact, it exhibits a quantum vacuum if dissipation is taken into 
account. In Z&P, the role of dissipation was played by a contraction mapping in a particular ansatz 
for the gauge field, which breaks Lorentz invariance. In a limit of the ansatz corresponding to the 
attractor, the theory falls in a quantum vacuum. There, the gauge field components reduce to 
quantum logic gates of one-qubit states.  
The idea of describing brain processes in terms of a field theory goes back to the1960s, when 
Ricciardi and Umezawa (1967) suggested to utilize the formalism of quantum field theory to 
describe brain states, with particular emphasis on memory (the “Quantum Brain Dynamics” 
paradigm).  
In Quantum Brain Dynamics, the field theory is quantum from the start, while in this paper we 
consider a classical field theory, and look for its hidden quantum features. 
The proposal of Ricciardi and Umezawa has gone through several refinements, for example by 
Stuart et al. (1978) and by Jibu and Yasue (1995). Some more recent progress has been achieved by 
Vitiello (1995) by including dissipation. However, making dissipation to agree with quantization is 
an hard task, due to the appearance of non-Hermitian operators, and in fact Vitiello’s dissipative 
quantum field theory encountered some technical difficulties. More precisely, the concrete building 
of a Dissipative Quantum Field Theory requires a generalization of the usual Quantum Field Theory. 
Namely the latter is based on assemblies of harmonic oscillators, which, in the case of dissipative 
processes, should be replaced by damped oscillators. Unfortunately the latter do not fulfil the energy 
conservation principle, and this fact makes unreliable any attempt to introducing an Hamiltonian-
like formalism. A convenient strategy was introduced in Celeghini et al. (1992) and in Vitiello 
(2001) where it was described the influence of a dissipating environment by doubling the original 
damped system through the introduction of a time-reversed version of it, which acts as an absorber 
of the energy dissipated by the original system.  
More recently, Blasone et al. (2001) presented an example of dissipation in a classical system which 
explicitly leads, under suitable conditions, to a quantum behaviour. They showed that the dissipation 
term in the Hamiltonian for a couple of classical damped-amplified oscillators manifests itself as a 
geometric phase and is actually responsible for the appearance of the zero point energy in the 
quantum spectrum of the 1D linear harmonic oscillator. It seems that the our and their lines of 
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thought have some point in common and are fundamentally in agreement. Some of the assumptions 
made by Blasone et al. were inspired by ‘t Hooft work (‘t Hooft, 1999 and 2001) where he discussed 
classical, deterministic, dissipative models and showed that constraints imposed on the solutions 
which introduce information loss resembles a quantum structure. ’t Hooft’s conjecture is that the 
dissipation of information which would occur at Planck scale in a regime of completely 
deterministic dynamics would play a role in the quantum mechanical nature of our world. 
Penrose’s idea of the non algorithmic nature of mathematical intuition (Penrose, 1989 and 1994) is 
another important feature of his vision of the Quantum Mind. Here we support this idea, although 
we use quantum metalanguage (Zizzi, 2010) instead of the first Gödel’s incompleteness theorem. 
However, the two approaches are related to each other, once one takes into account the quantum 
version (Zizzi, 2004) of Gödel’s theorem, in the logic of quantum information, which derives from a 
quantum metalanguage.  
The paper is organized as follows: 
In Sect. 2, we present the physical model, that is, the classical SU(2) gauge theory, the ansatz, which 
breaks Lorentz invariance, and the contraction mapping playing the role of dissipation. 
In Sect. 3, we show that qubits can be processed in the quantum vacuum due to the fact that there the 
gauge field components reduce to quantum logic gates for one-qubit states. Due to the very low 
temperature of the quantum vacuum, tubuline-qubits do not decohere. 
In Sect. 4, we interpret the classical dissipative non-abelian gauge theory of the brain as the quantum 
metalanguage, from which originates the quantum object language of the unconscious, and argue 
that  quantum metalanguage represents the non-algorithmic aspect of the mind.  
 
2. The Physical Model 
An ansatz was introduced in Z&P, for the classical SU(2) gauge field, which, in a particular limit 
corresponding to a vacuum solution, enables one to recover spin ½ quantum mechanics. This ansatz 
is gauge invariant, but breaks Lorentz invariance. Of course the nature of the new vacuum state must 
be intrinsically quantum. At this point one might ask which is the physical mechanism that can 
trigger this process, which leads to a quantum vacuum state of the original classical theory. The 
most plausible answer is dissipation. A dissipative system is characterized by the spontaneous 
appearance of symmetry breaking, which in our case is the breaking of Lorentz symmetry. This 
vacuum is quantum as all the thermal fluctuations have disappeared because of dissipation, and 
quantum fluctuations dominate. In the limit, the gauge field reduces to the generator of a global 
U(1), i.e., a phase, times a Pauli matrix, that is, a quantum logic gate of one-qubit state. This 
suggests that qubits can be processed in a quantum vacuum of the classical SU(2) gauge theory. 
Given the quantum vacuum is at zero absolute temperature, 0=T , the qubits do not decohere, 
unless they are put in interaction with an external environment. In Z&P dissipation was not 
described by any particular model, however its role was played by a contraction mapping in the 
ansatz. The contraction mapping is related to some geometrical aspects of the gauge theory under 
consideration. 
 
2.1. The Ansatz  
In Z&P, we considered the SU(2) gauge field )(xAa

µ   )3,2,1;3,2,1,0( == aµ  and made the 

following ansatz: 
axia exA σµλ

µ
)()( −=                                                                                                                           (2.1) 

where )(xµλ is a U(1) gauge field and the aσ  are the Pauli matrices, which satisfy the commutation 

relations: 
[ ] c

abc
ba i σεσσ 2, =                                                                                                                          (2.2) 

The ansatz (2.1) explicitly breaks Lorentz invariance.  
In the following we will consider, in particular, the limit case: 
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0)( →xµλ                                                                                                                                       (2.3) 

In this limit one gets aa xA σµ →)( . In a sense, the SU(2) gauge theory reduces to the quantum 

mechanics of spin ½. 
The ansatz (2.1) can be rewritten as: 

µλ
µ

ieA −=                                                                                                                                        (2.4) 

where: 
2/aaAA σµµ ≡                                                                                                                                 (2.5) 

Let us consider the SU(2) gauge transformations performed on the original gauge field µA  : 

11' −− ∂−=→ UU
g

i
UUAAA U

µµµµ                                                                                              (2.6) 

where g is the gauge coupling constant, U is given by: 
)2/)(exp( aa xiU σρ=                                                                                                                    (2.7) 

and )(xaρ are three arbitrary real functions. 
The ansatz (2.7) transforms under (2.5) as: 

1' −−−− ∂−=→ UU
g

i
eee iiUi

µ
λλλ µµµ                                                                                              (2.8) 

In the limit case (2.3) the transformations (2.8) become: 
1' 1 −−− ∂−=→ UU

g

i
ee iUi

µ
λλ µµ                                                                                                    (2.9) 

Eq. (2.9) can be transformed into a pure gauge by a suitable choice of the arbitrary functions )(xaρ . 
This means that in the limit case the ansatz (2.1) describes a vacuum solution. 
In the original SU(2) theory invariant under Lorentz transformation, the vacuum state was 0 , 

corresponding to 0=µA . In presence of the ansatz, which breaks Lorentz invariance, there is, in the 

limit case, a new vacuum stateϑ , corresponding to 1=µA . 

Then, the gauge fieldµA  has a non-vanishing v.e.v. in the new vacuum: 

0≠ϑϑ
µ

A                                                                                                                                 (2.10) 

Let us take the temporal gauge 00 =A . Then, Eq. (2.10) becomes: 

0≠ϑϑ
i

A             )3,2,1( =i                                                                                                   (2.11) 

This indicates that there is a spontaneous symmetry breaking of the little group O(3), to which are 
associated three Goldstone bosons iϕ , each one corresponding to a particular O(3) generator. 

 
2.2. The Contraction Mapping as Dissipation 
The pure SU(2) gauge theory under consideration can be described in terms of a principal fiber 
bundle ( )GBP ,,,π , where P is the total space, B is the base space (in our case 4R ), G (in our case 
SU(2)) is the structure group, which is homeomorphic to the fiber space F, and π  is the canonical 
projection: 
 4: RP →π                                                                                                                                   (2.12) 
For a review on principal fiber bundles see, for instance, Daniel and Viallet (1980). 
The base space 4R  is equipped with the Euclidean metric d: 

( ) xxxxd −= ','                                                                                                                              (2.13) 

where x and 'x  are two points of 4R  and must be intended as { }µxx ≡ , { }'' µxx ≡   ( )4,3,2,1=µ . 
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The complete metric space ),( 4 dR  has an induced topology which is that of the open balls with 

rational radii 
n

rn

1= , with n a positive integer. 

The open ball of rational radius nr ,  centred at *x , is: 

{ }nr rxxdRxxB
n

<∈= ),()( *4*                                                                                                    (2.14) 

The set of open balls )( *xB
nr

 is an open covering of 4R and forms a local basis for the topology. 

Now, let us consider again the ansatz (2.4), and make the following natural choice for )(xµλ : 

n

xx
i

exx
−

=
*

*)(λ                                                                                                                              (2.15) 

where λ  in (2.15) must be intended as { }µλλ ≡       ( )4,3,2,1=µ . 

The point *x  is a fixed point for )(xλ as it holds: 
** )( xx =λ                                                                                                                                     (2.16) 

It is easy to check that )(xλ  continuously approaches *x  for large values of n:  
*)(lim xxn =∞→ λ .                                                                                                                         (2.17) 

The fixed point *x  is an attractive fixed point for )(xλ , as it holds: 

1)(' * <xλ                                                                                                                                     (2.18)  

The point *x is then a particular kind of attractor for the dynamical system described by this theory. 
Furthermore, it holds: 

1)(' <xλ                                                                                                                                       (2.19) 

for all ( )*xBx
nr

∈ , which is equivalent to say that )(xλ  is a contraction mapping in the attraction 

basin of *x , that is, it satisfies the Lipschitz condition (Jeffreys and Jeffrey, 1988): 
( ) ( )( ) ( )',', xxdqxxd ≤λλ                                                                                                               (2.20) 

with )1,0(∈q  for every ( )*', xBxx
nr

∈ . 

 
3. Qubits Processing in the Quantum Vacuum 
The qubit is the unit of quantum information. It is the quantum analog of the classical bit { }1,0 , with 
the difference that the qubit can be also in a linear superposition of 0 and 1 at the same time. For a 
review on quantum information see, for instance, Nielsen and Chuang (2000). 
The qubit is a unit vector in the 2-dimensional complex Hilbert space 2C .  
The expression of the qubit is: 

10 βα +=Q                                                                                                                             (3.1) 

where the symbol  is the ket vector in the (bra-ket) Dirac notation in the Hilbert space. 

The two kets: 









=

0

1
0  ,  








=

1

0
1                                                                                                                        (3.2) 

form the orthonormal basis of the Hilbert space 2C , called the computational basis. 
The coefficients βα ,  are complex numbers called probability amplitudes, with the constraint: 

1
22 =+ βα                                                                                                                                    (3.3) 

to make probabilities sum up to one. (Any quantum measurement of the qubit, either gives 0  with 

probability 
2α , or 1  with probability 

2β ). 
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The geometrical representation of the qubit corresponds to the Bloch sphere, which is the sphere2S  
with unit radius. Formally, the qubit, which is a point of a two-dimensional vector space with 
complex coefficients, would have four degrees of freedom, but the constraint (3.3) and the 
impossibility to observe the phase factor reduce the number of degrees of freedom to two. Then, a 
qubit can be represented as a point on the surface of a sphere with unit radius. 
The Bloch sphere is defined by: 









=∈= ∑
=

3

1

232 1
i

ii xRxS                                                                                                                 (3.4) 

Any generic 1-qubit state in (3.1) can be rewritten as: 

1
2

sin0
2

cos
ϑϑ φieQ +=                                                                                                             (3.5) 

where the Euler angles ϑ  and φ  define a point on the unit sphere2S .  
Thus, any 1-qubit state can be visualized as a point on the Bloch sphere, the two basis states being 
the poles.  
We remind that any transformation on a qubit during a computational process is a reversible 
operation, as it is performed by a unitary operator U:  

Ι=UU † .                                                                                                                                          (3.6) 
where †U  is the Hermitian conjugate of U . 
This can be seen geometrically as follows. Any unitary 22×  matrix U on the 2-dimensional 
complex Hilbert space 2C  (which is an element of the group SU(2) multiplied by a global phase 
factor):  










−
= ** αβ

βαφieU                                                                                                                         (3.7) 

(where *α  is the complex conjugate of α ), can be rewritten in terms of a rotation of the Bloch 
sphere: 

)(ˆ2 θφ
n

i ReU =                                                                                                                                 (3.8) 

where )(ˆ θnR  is the rotation matrix of the Bloch sphere by an angle θ  about an axis n̂ .  

In Z&P we showed that the SU(2) gauge fields aAµ  reduce to the operatorsaA which, up to a 

multiplicative constant, are the product of the generator of a global U(1) group times the Pauli 
matrices: 

aixa igeA σ
*−−=                                                                                                                             (3.9) 

This means that the pure SU(2) gauge field theory is reduced to a quantum mechanical theory of 
spin ½ with a constant U(1) “charge”, in absence of any interaction. 
The operators aA  in (3.9) are unitary operators, as it holds: 

1
† =aa AA                                                                                                                                      (3.10) 

Then, the aA operators can play the role of quantum logic gates for one-qubit states. In fact, the X, 
Y, Z quantum logic gates for one-qubit are just the three Pauli matrices:  









=

01

10
X          







 −
=

0

0

i

i
Y        









−
=

10

01
Z                                                                       (3.11) 

and the operatorsaA  in (3.9) can be rewritten as: 

XigeA ix∗−−=1 ,   YigeA ix∗−−=2 ,   ZigeA ix∗−−=3 .                                                                   (3.12) 

that is, the aA operators are, up to a constant factor and a phase factor, just one-qubit quantum logic 
gates.  
It should be noticed that theaA operators are not Hermitian. This feature is a residual of the 
dissipative character of the original field theory.  
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Then, qubits can be processed in the quantum vacuum state of a classical dissipative non-abelian 
gauge theory, and that decoherence is avoided due to absolute zero temperature of the quantum 
vacuum. This means that tubulines-qubits of the Penrose-Hameroff model of the quantum mind can 
take place in this physical model, and moreover they are protected against decoherence.  
 
4. Quantum Metalanguage: The Non-algorithmic Aspect of the Mind 
The arguments discussed in the previous sections suggest that the non-algorithmic aspect of  the 
mind is hold by a classical, dissipative, non-abelian field theory of the brain. In fact such a theory is 
not computable, neither classically, nor quantum. The quantum computational aspect is hold by the 
quantum mechanical vacuum of that  theory (in the Hameroff-Penrose model the quantum 
computational mode should describe the unconscious). The classical-computational mode is 
obtained after decoherence of superposed quantum states, through interaction with the external 
world. This mode should correspond to consciousness. 
In logical terms, as it was shown in Zizzi (2010), the classical field theory of the brain with hidden 
quantum nature is a quantum metalanguage (QML), while the quantum mechanics of qubits is the 
Quantum Object Language (QOL).  
QML is made of assertions, linked in a metalinguistic way. The difference with a classical 
metalanguage is that in QML atomic assertions carry assertion degrees, which  are complex 
numbers, interpreted as probability amplitudes. Also, the QML is equipped with Meta Data, 
corresponding to the constraint that probabilities sum up to one. The reflection principle of  basic 
logic (Sambin et al. 2000) was used to recover QOL from QML. By the reflection principle, all the 
logical connectives are introduced by solving an equation (called definitional equation), which 
“reflects” meta-linguistic links between assertions into logical connectives between propositions.  
The QOL derived from the QML through the reflection principle, is made of propositions linked by 
quantum connectives, like, for instance, the connective “quantum superposition” (the quantum 
analogous of the  classical connective “AND”) which is labelled by complex numbers, and is non-
commutative. 
In the limit of maximal dissipation, when the gauge fields reduce to unitary operators, which process 
quantum information, we are at the very level of the reflection principle: QML is processing QOL 
whose elements, propositions, are interpreted as quantum states.  
It should be noticed that a quantum computer (QC) has a QOL, and its physical theory is QM. 
Therefore, a QC cannot reach a QML (a non-algorithmic mode of thought) because it is impossible 
to go from the finite number of degrees of freedom of QM to the infinite ones of FT. That is, a 
quantum computer will never be able to reach a non-algorithmic mode of thought. This is the 
difference between a quantum mind and a quantum computer.  
In summary,  we suggested that the mind has three modes: the non-computational mode (QML), the 
quantum-computational mode (QOL) describing the Quantum Mind (or unconscious), and the 
classical-computational one, describing the Classical Mind (or consciousness). The physical 
description of the first mode is a classical Field Theory , the second one is Quantum Information, the 
third one is Classical Information.  
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