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Abstract e

Yakov Borisovich Zeldovich pioneered the difficult field of turbulent combustion, and would have
appreciated the complexities that arise when collisional fluid mechanics, general relativity, self-
gravitational-stratification, fossil turbulence, fossil turbulence waves, and beamed zombie turbulence
maser action mixing chimneys are combined in the first turbulent combustion of the big bang. Space
telescopes show distinctive fossil turbulence patterns in the cosmic web and in the cosmic microwave
background that confirm a big bang turbulent combustion mechanism, where turbulence is defined by
inertial vortex forces and Fortov-Kerr negative pressures extract mass-energy from turbulence
needed to trigger inflation by gluon viscous stresses of the strong force freeze-out. Such turbulence
always cascades from small scales to large (see journalofcosmology.com volumes 15-23) and
leaves patterns termed fossil turbulence in a variety of hydrophysical fields that preserve information
about the previous turbulence. The cosmic microwave background spectrum reveals fossil turbulence
patterns at large wavelengths (now >10"25 m) fossilizing big bang turbulent combustion, and smaller
wavelengths fossilizing viscous gravitational fragmentation of the plasma epoch at 10"12 seconds to
produce ~10"24 m superclusters and superclustervoids now ~10"25 m. The CMB spectral
turbulence pattern is a single peak reflecting a highly concentrated vortex, and two secondary peaks
reflecting transverse secondary vortices at right angles that stretch the primary vortex by inertial
vortex forces into a tubular shape about one part per million of the Kolmogorov space time at the
Planck conditions of the big bang. Fortov-Kerr negative stresses exceeded ~ 10"113 Pa to extract
mass-energy from the vacuum. The plasma turbulence peak and its two harmonics has been
misinterpreted as sonic oscillations of trapped baryons in cold dark matter potential wells. LCDMHC
cosmology is generally falsified by the fluid mechanically based cosmology and observations
presented, where cold dark matter, dark energy and hierarchical clustering of CDM clumps is
questioned. Schild 1996 proved the dark matter of galaxies is earth-mass planets of hydrogen-
helium, confirming fluid mechanical predictions of Gibson 1996 that instead, plasma
superclusters and clusters of protogalaxies fragmented into Jeans mass clumps of planets at the
plasma to gas transition, at time 1013 seconds. Stars and larger planets are formed in these proto-
globular-star-cluster clumps by binary mergers.




Fossils of big bang and plasma
turbulence appear in the cosmic
microwave background

Signatures of big bang turbulence and plasma turbulence emerge from Planck Collaboration

The turbulence energy cascade is always from small scales to large
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Outline

A Definition of turbulence by vxw force

A Definition requires a turbulent energy
cascade from small to large scales

A Necessary to define fossil turbulence

A Evidence: wakes, Jets, boundary
layers, mixing layers, big bang

A Crucial to oceans, atmosphere,
cosmology, astrophysics, astronomy
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Fossils of supervoid and big bang turbulence detected

in the cosmic microwave background (CM?

A Weak turbulence at supercluster
void boundaries expands at sonic
speeds ~c, mixing the temperature

A Strong turbulence patterns reflect
the gluon viscosity limit of big bang
turbulent mixing

A Bershadskii and Sreenivasan
(2002,3,6) show a clear CMB
connection to terrestrial turbulence.
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Dark matter planets in PGC
clumps make all the stars

Dark matter planets appear as Herbig Haro objects as they form stars
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Star formation reveals that the dark matter is clumpy at PFP and PGC scales




Intermittency of interstellar "7,

medium shown by star jets

Stellar accretion disk plasma jet brings dark matter
planets out of the dark as Herbig Haro objects
HH 34 Hubble Space Telescope

star  plasma jet reveals dark matter planets
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HH jet lengths are limited by their PGC boundaries
Credit: NASA/ESA/P. Hartigan (Rice University)




Star jets reveal merging dark
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Turbulence in our local PGC
clump of dark matter planets

BZTMA mixing of electron density in dark matter
planet atmospheres during star formation
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Figure 7. Application of BZTMA muxing theory to understand pulsar electron density fluctuation spectra and star formation
from planets . Jovian PFP (primordial —fog-particle) Planets (JPPs) comprnise the baryonic dark matter of all galaxies
and develop turbulent atmospheres when evaporated by radiation from rapidly spinning white dwarf and neutron stars.




Turbulence from dark matter %:V\
planets and their PGC clumps 202

Dark Matter Planets move as fluid particles in turbulent vortex

lines, feeding the formation of bright (but not massive) stars, Smith objects show bright star formation triggered from
HGD cosmology (Gibson 1996, Schild 1996) PGC clumps of dark matter planets by MECO plasma jets
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Figure 1 | Collapsing cloud. Thisinfrared image
of the SDC335 dark cloud was taken with the
Spitzer telescope. Peretto et al.” find two massive

gas cores (dotted box) near the cloud centre, ; y-ray jets'
coinciding with infrared sources, which are likely > http:/ /wwiw.cflharvard.edu/news/2012/pr201218 htrl

to be forming massive stars. A web of surrounding
filaments (dashed lines) is contracting towards the
centre, providing clues to how these cores and stars
are forming,.




Momentum Equation R
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Definitions of Turbulence and Fossil Turbulence

Turbulence is defined as an eddy-like state of fluid \éﬁ’ﬁ\
motion where the inertial-vortex forces of the f‘g\@‘qﬁ

eddies are larger than any other forces that tend
to damp the eddies out.

A

Turbulence ALWAYS cascades from small scales to large

Fossil turbulence is defined as a perturbation in any
hydrophysical field produced by turbulence that
persists after the fluid is no longer turbulent at the
scale of the perturbation.



Definitions of turbulence and fossil turbulence
and the direction of the turbulence cascade “’%«.EL
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Turbulence always cascades from small scales to large



a. The turbulence cascade is from small scales to large
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Figure 3. Physical mechanisms of turbulence and stratified turbulence. a. Vortex mechanisms of the turbulence cascade
from small scales to large. Adjacent eddies with the same vorticity produce inertial vortex forces v X @ (dashed
arrows) that cause merging. Nearby eddies with opposite spin diverge and expand the turbulent region driven by
v x @ forces. b. Turbulence, fossil turbulence, and fossil-turbulence-waves in a stratified fluid produce internal-

wave maser-action where turbulent kinetic energy fossilized by buoyancy forces is radiated near vertically as fossil
turbulence waves (FTWs).




Large wavelength lee ISW packet and seamount detected Dy SAR-BZINIA
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Figure 1. Seamount and \nternal tidal waves from space. How 1s this
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Conclusions —new cosmology ~.
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[. Hydro-Gravitational Dynamics
(HGD) describes the gravitational
structure formations of cosmology

2. The standard ACDMHC model is
wrong and must be abandoned

3. Galaxy dark matter is primordial
PFP planets in PGC clumps

4. No dark energy!




Conclusions-natural fluids

e Turbulence is driven by inertial-vortex forces

* Turbulence cascades from small scales to large

* Turbulence in natural fluids fossilizes at large scales
e Vertical and radial transport involves a complex
interaction between turbulence, fossil turbulence ,
zombie turbulence, and zombie turbulence waves
e/ntermittency effects cannot be neglected

The End



Q0957+561AB quasar “The Twin”
M=1040 kg, rs=6x1012 m
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Critical Turbulence Length Scales




Hydro-gravitational structure =,
formation after the big bang 3

Gas protogalaxies fragment into t=10s

dark matter planets (in clumps) M
at 300,000 years that merge to O

form the first stars: No dark age!
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The Nomura Scale
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Protogalaxies fragment along turbulent vortex lines and in spiral pancakes



Gravitational magnification of dim protogalaxig}sﬁ\
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Tadpole galaxy (VV29) merger
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c c .~ VV29b star-wake .
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_.== Many of the dimmest and most distant
luminous objects [11] are linear
“chain galaxies’ doublets, triplets,
and tadpoles interpreted here as proto-galaxies
fragmented at size Ly in the viscous plasma
epoch along turbulence vortex lines . The
luminosity reflects stars formed in the baryonic
dark matter halos, whose PGC-viscosity resists
stretching by the expansion of the universe
with rate-of-strain y=t-1[5,6].
PFP-planet-viscosity keeps the PGCs
in meta-stable equilibrium.




VV29c finally embedded in VV29a

- | B Star and dust
E 9 wakes 1n the dark
matter halo
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*Young
globular star
clusters are

brought out of
the dark by
the merger

Tran et al. 2003 Fig. 1
event 42 YGCs identified
«Star

: tilting PGC accretion disk
formation e >
\ AGN jet triggers star
reveals the formation in a galaxy’s
galaxy dark dark matter halo. The
. spiral star and dust
matter is trails triggered in the
o L PGC accretion disk

frozen planets 3 ftar formation oy Aat Jet. reveal the BDM, and
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*Young
globular star
clusters
*Dozens of
them 1n a
precise row

cannot be
anything but
a wake
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The dark
halo

boundary

A Stars are triggered
to form young
globular clusters

A The wake size LN
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