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Abstract 

This paper shows how different quantum phenomena such as superposition and entanglement 

can be easily explained by a three-dimensional structure of time which also explains some 

cosmological features such as the observed flatness and isotropy of the Universe. 
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1. Introduction 

Time is used to label moments in the universe and to measure duration elapsed between events 

[1]. However, according to relativity, the labeling of events is not equivalent to the measuring 

of the elapsed time between these different events and moreover, time is combined with space 

to form a single block of spacetime. 

On the other hand, in conventional quantum physics, time is not an observable and is usually 

considered as a scalar quantity used to parametrize a quantum system. It is even proposed by 

some papers that time has no real existence and is simply an emergent property derived from 

quantum correlations. In particular, the quantization of general relativity yields the Wheeler-De 

Witt equation [2, 3] predicting a Universe without time. 

In this paper, it is simply intended to model time in a way that makes sense of certain 

phenomena of nature such as superposition, measurement and entanglement [4] in quantum 

physics as well as the flatness and horizon problems in cosmology. 

According to the Copenhagen interpretation [5], measurement prompts a wave function initially 

in a superposition state to be reduced into a single state of what came to be known as collapse 

of the wave function [6]. But according to the many-world interpretation [7, 8], there is no wave 

function collapse and all measurement results exist but in different worlds. 

Another feature of quantum mechanics is entanglement which occurs when the constituents of 

a system cannot be described independently. Such phenomena were the subject of many papers 

and in particular, a paper by Einstein et al [9] describing what came to be known as the EPR 

paradox in which entanglement is considered to violate locality. However, Bell [10] proved that 

the principle of locality, was inconsistent with the predictions of quantum theory. Moreover, 

entanglement was verified experimentally by measuring the polarization or spin of entangled 

particles in different directions and the results were in agreement with quantum mechanics [11, 

12]. 

In this paper, time is considered to have a certain “thickness” that gives an alternative and more 

logical interpretation of the above quantum phenomena. 

Concerning cosmology, the standard big bang theory explains the expansion of the Universe, 

the spectrum of the cosmic microwave background radiation as well as plenty other 
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observations. However, it leaves some questions unanswered and seems to demand very 

carefully chosen initial conditions [13]. Indeed, the current observational situation seems to 

indicate that the Universe is far more spatially flat, isotropic and homogeneous on large scales, 

than can be explained by an initial explosion. In particular, the observations of the cosmic 

background radiation show that the temperature of the early Universe was extremely uniform. 

This feature, known as the horizon problem cannot be accounted for by the standard big bang 

theory. Another special feature, known as the flatness problem requires from the big bang to 

specify the mass density of the early Universe with extreme precision [14]. These initial 

conditions were explained by Guth [15] by an inflation phenomenon at the early stage of the 

Universe. This inflationary scenario provides a dynamical mechanism that explains the 

evolution of the early Universe towards flatness, homogeneity and isotropy. 

Here again, the proposed time-thickness model is used to give an alternative scenario that 

explains these seemingly special initial conditions of the Universe but leads to a reassessment 

of the actual standard model of evolution. 

 

2. Time-lines  

In this section, it is proposed to describe time as evolving dynamically in a three-dimensional 

vector space. It can be defined in a reference frame consisting of a three-dimensional coordinate 

system (for example a Cartesian coordinate system). The first coordinate axis is named 

“physical-time-axis” or 𝑡 − 𝑎𝑥𝑖𝑠, the second coordinate axis is named “the uncertainty-time-

axis” or 𝜂 − 𝑎𝑥𝑖𝑠 and finally, the third coordinate axis is named “the state-time-axis” or 𝜃 −

𝑎𝑥𝑖𝑠. The physical-time-axis is the usual time-axis with respect to which are defined the 

symmetric fundamental laws of nature, the other ones will be described in the next sections. 

To each quantum system is associated a time-trajectory-like-line, hereinafter referred to as, 

“elementary-time-line” formed by a succession of ordered points of intrinsic dynamical 

elementary-time instants specified by the triplets 𝑡𝑒 = (𝑡, 𝜂, 𝜃 ). 

The elementary-time-lines of all quantum systems are regarded to be elementary constituents 

of a universal or global-time-tube. An element of the global-time-tube can be defined by the 

following metric: 

𝑑𝑡𝐺
2 = 𝑑𝑡2 + 𝑑𝜂 2 + 𝑑𝜃 2         (1) 

The projection of different elementary-time-lines onto the 𝑡 − 𝑎𝑥𝑖𝑠 generates a relative 

physical-time order between these time-lines. This order gives the illusion that all quantum 

systems are governed by an external time and that each physical-time-coordinate forms an 

event. 

In the next sections, the different features of the elementary-time-lines will be considered. In 

particular, section 3 will be devoted to the quantum features of the elementary-time-lines 

whereas, section 4 will be dedicated to the cosmic features of the global-time-tube. 

 

3. Quantum features of a dynamical time-line 
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A quantum system (e.g. spin of a particle) can be defined by a state-vector in an orthonormal 

eigenvector basis. In particular, for any observable A, (when no observation is done yet), the 

state-vector |𝜓⟩ of a quantum system is initially defined by a superposition of vector projections 

in an eigenbasis {|𝜓𝑖⟩}. In other words, the state-vector |𝜓⟩ is initially defined as a linear 

combination of the different possible sub-states. The normalized state-vector of the quantum 

system can thus be expressed as follows: 

 |𝜓⟩ = ∑ 𝑐𝑖𝑖 |𝜓𝑖⟩   (2) 

where |𝜓𝑖⟩ are the sub-states of the quantum system defined by ⟨𝜓𝑖|𝜓𝑗⟩ = 𝛿𝑖𝑗 (Kronecker delta) 

and the coefficients 𝑐𝑖 (or wave function) of the state-vector |𝜓⟩ define the probability 

amplitudes in the specific orthonormal eigenvector basis {|𝜓𝑖⟩}. Thus, each state-vector |𝜓⟩ is 

modeled as a superposition of sub-states. 

According to the present model, the evolution of the state-vector |𝜓⟩ is defined at each 

elementary-time instant specified by the triplet 𝑡𝑒 = (𝑡, 𝜂, 𝜃 ). The projection of the state-vector 

|𝜓⟩ onto the 𝑡 − 𝑎𝑥𝑖𝑠 evolves according to the Schrödinger equation, whereas, the projection 

of the state-vector |𝜓⟩ onto the 𝜃 − 𝑎𝑥𝑖𝑠 evolves according to an “internal” transition 

mechanism from one sub-state to another and the projection of the state-vector |𝜓⟩ onto the 

𝜂 − 𝑎𝑥𝑖𝑠 evolves according to another “internal” transition mechanism from one eigenbase (or 

chain of sub-states) to another. Thus, the elementary-time-line corresponding to the state-vector 

|𝜓⟩ can be represented as being composed of a plurality of elementary components, hereafter 

called “elementary-time-filaments”, each one being associated with a corresponding sub-state. 

Each elementary-time-filament evolves along the physical time according to the Schrödinger 

equation whereas, transitions or jumps from one elementary-time-filament into another are 

governed by internal mechanisms. 

On the other hand, the elementary-time-line can be represented at each physical-time index by 

a two-dimensional slice in the plane (𝜂, 𝜃). The transition mechanism along the 𝜃 − 𝑎𝑥𝑖𝑠 is 

autonomous from that along the 𝜂 − 𝑎𝑥𝑖𝑠 and thus, each mechanism can be studied 

independently from the other. 

In the following sections, the projection of the state-vector |𝜓⟩ onto the different time-axis will 

be studied separately. 

 

3.1. Evolution along the physical-time-axis 

Conventionally, the state-vector |𝜓⟩ evolves according to the deterministic law of Schrödinger 

equation when projected onto the 𝑡 − 𝑎𝑥𝑖𝑠. In particular, each sub-state evolves along its 

elementary-time-filament whose projection onto the physical-time-axis is governed by the 

Schrödinger equation.  

 

3.2. Evolution along the state-time-axis 

At each current physical-time instant 𝑡, a state-vector is expressed in function of a set of 

amplitudes of probability that clearly define the probability distribution of the different sub-

states composing the state-vector. Thus, the “internal” mechanism of transitions of the different 
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sub-states along the 𝜃 − 𝑎𝑥𝑖𝑠 can be modeled by either a periodic process or a stationary 

Markovian process. In either case, the state space is defined by a set of eigenvectors {|𝜆𝑖(𝜃)⟩}, 

wherein, each sub-state |𝜆𝑖(𝜃)⟩ indicates the state of the state-vector at a corresponding state-

index θ. The process can be fully represented by a state-diagram defining the transitions 

between the different sub-states as well as their corresponding life-times, hereafter called 

“holding state-times”. 

When the “internal” transition mechanism is considered to be periodic, the state-time-index 

may then be defined in a domain limited to an interval ∆𝜃 = [𝜃𝑎  𝜃𝑏] wherein, for simplicity 

reasons, ∆𝜃 is considered to be dimensionless and normalized (i.e. ∆𝜃 = 1). On the other hand, 

it is straightforward to suppose that each sub-state can only jump into a single other sub-state 

and two different sub-states cannot jump into the same sub-state. In other words, the state-

diagram of the periodic process forms a one-to-one correspondence between the set of sub-

states into itself (i.e. a simple permutation). This process can thus be completely described by 

defining the permutation correspondence between the different sub-states and by assigning a 

“holding state-time” ∆𝜃𝑗 to each sub-state. The “holding state-time” ∆𝜃𝑗 represents the “state-

life-time” of the corresponding sub-state |𝜆𝑗⟩ and depends on the corresponding coefficient 𝑐𝑗 

of the state-vector |𝜆⟩. Indeed, the outcome probability of each sub-state depends on its life-

state-time and as the state-time-period ∆𝜃 (i.e. the sum of all “holding state-times”) is chosen 

to be equal to one, then each holding state-time ∆𝜃𝑗 represents the outcome probability of the 

corresponding sub-state |𝜆𝑗⟩. 

On the other hand, if the “internal” transition mechanism is governed by a stationary Markovian 

process, the state-time-index may also be defined in a domain limited to an interval ∆𝜃 =
[𝜃𝑎   𝜃𝑏], wherein ∆𝜃 denotes the state-time-term needed for the stationary Markov chain to 

reach a steady-state solution. The process is considered to be a homogeneous Continuous-Time 

Markov Chain (CTMC) whose state space is formed by a set of eigenvectors {|𝜆𝑖(𝜃)⟩}, where 

the sub-state |𝜆𝑖(𝜃)⟩  indicates the state of the state-vector at the corresponding state-time-index 

θ. The rate of transition or “jump” from a sub-state |𝜆𝑖(𝜃)⟩ into another sub-state |𝜆𝑗(𝜃)⟩ is 

noted 𝑞𝑖𝑗 and the transitions between the different sub-states can be described by a transition 

(or generator) matrix 𝑄 = (𝑞𝑖𝑗). The holding state-time (i.e., the state-time spent in the sub-

state |𝜆𝑖(𝜃)⟩ before jumping into the subsequent sub-state) is noted ℎ𝑖(𝜃) and is exponentially 

distributed in function of a holding time rate 𝑣𝑖(𝜃) which corresponds to the transition rate out 

of the sub-state |𝜆𝑖(𝜃)⟩. Thus, the “holding state-time” can be expressed as: ℎ𝑖(𝜃)~𝑒𝑣𝑖(𝜃). The 

transition probability from a sub-state |𝜆𝑖(𝜃)⟩  into another sub-state |𝜆𝑗(𝜃)⟩ is noted 𝑝𝑖𝑗 where 

𝑝𝑖𝑗 = 𝑞𝑖𝑗  𝑣𝑖⁄  and where the transition probabilities between the different sub-states can be 

described by a transition probability matrix 𝑃 = (𝑝𝑖𝑗). 

The probability for the state-vector to be in the sub-state |𝜆𝑖(𝜃)⟩  at state-time-index θ is denoted 

by 𝜋𝑖(𝜃) = 𝑃(|𝜓(𝜃)⟩ = |𝜆𝑖(𝜃)⟩) and the state-probability vector is defined by the n-tuple of 

probabilities of all the sub-states composing the state-vector:  

 𝜋(𝜃) = (𝜋1(𝜃), … , 𝜋𝑖(𝜃), … 𝜋𝑛(𝜃)) = (|𝑐1|2, … , |𝑐𝑖|
2, … , |𝑐𝑛|2)   (3) 

Each term 𝜋𝑖(𝜃) can be interpreted as the fraction of state-time, during which the state-vector 

reamins in the sub-state |𝜆𝑖(𝜃)⟩ and is equal to the square module of the probability amplitude. 
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Given that the dynamics along the 𝜃 − 𝑎𝑥𝑖𝑠 is stationary, the state-probability vector should 

verify the following steady-state or balance equation: 

𝜋(𝜃) = 𝜋(𝜃)𝑃(𝜃)   (4) 

This expression simply indicates that the distribution of the state-probability vector  𝜋(𝜃) 

remains stationary for all θ and can equivalently be expressed as follows: 

𝜋𝑗(𝜃) = ∑ 𝜋𝑖(𝜃)𝑝𝑖𝑗𝑖  where ∑ 𝜋𝑖 = 1𝑖 .  (5) 

Similarly to the periodic process, the state-time-term ∆𝜃 is considered to be dimensionless and 

normalized (i.e. ∆𝜃 = 1). Thus, by integrating on the whole term ∆𝜃, the probability 𝜋𝑖(𝜃) for 

the state-vector to be in a specific sub-state |𝜆𝑖(𝜃)⟩  is given by: 

 𝜋𝑖(𝜃) = ∫ ℎ𝑖  (θ)dθ  and  𝜋(𝜃) = ∑ 𝜋𝑖(𝜃)𝑖 = ∑ ∫ ℎ𝑖  (θ)dθ𝑖    (6) 

The state-time-intervals can be reclassified by grouping together those that are related to the 

same sub-state. In other words, the state-time-intervals can be distributed into different classes 

each of which is associated to a specific sub-state. Each class is represented by a set ∆𝜃𝑖 

corresponding to the sequence of all (non-overlapping) sub-intervals visited by the same sub-

state |𝜆𝑖(𝜃)⟩: 

∆𝜃𝑖 = ⋃ [𝜃𝑖𝑗 𝜃𝑖(𝑗+1)]𝑗     (7) 

where each [𝜃𝑖𝑗 𝜃𝑖(𝑗+1)] represents the state-time sub-interval during which the state-vector 

is found to be in the sub-state |𝜆𝑖(𝜃)⟩ for a corresponding holding state-time ℎ𝑖(𝜃). The measure 

of the set ∆𝜃𝑖, denoted 𝜇(∆𝜃𝑖), corresponds therefore to the fraction of state-time visited by the 

sub-state |𝜆𝑖(𝜃)⟩ and is thus equal to 𝜋𝑖(𝜃). The set ∆𝜃𝑖 simply concatenates all sub-intervals 

scattered all over the state-time-term ∆𝜃 and visited by the same sub-state |𝜆𝑖(𝜃)⟩ and thus 

enables to express the state-vector |𝜓⟩ along the 𝜃 − 𝑎𝑥𝑖𝑠. 

Indeed, whether the process is periodic or stationary, the state-vector |𝜓⟩ of equation (2) can be 

expressed in function of its sub-states labelled and ordered along the 𝜃 − 𝑎𝑥𝑖𝑠 according to the 

following equation: 

|𝜓⟩ = ∑ 𝑐𝑗𝑗 𝛿𝜃(∆𝜃𝑗) |𝜆𝑗⟩    (8) 

where 𝛿𝜃(∆𝜃𝑗) is the Dirac measure (or indicator function) defined as follows: 

 𝛿𝜃(∆𝜃𝑗)  = {
1 𝑖𝑓 𝜃𝜖∆𝜃𝑗  

0 𝑖𝑓 𝑛𝑜𝑡
     (9) 

The above equation (8) expresses the state vector as a linear superposition of vector projections 

in an eigenbasis {|𝜆𝑗⟩} ordered by the state-time parameter. In other words, it forms a step 

function made up of a linear combination of Dirac measures of intervals visited by the vector 

projections. 

The wave function 𝜓(𝜆𝑗, 𝜃) associated to the state-vector |𝜓⟩ of equation (8) in the basis {|𝜆𝑗⟩}, 

may thus, be expressed as follows: 

𝜓(𝜆𝑗 , 𝜃) = ⟨𝜆𝑗|𝜓⟩ = 𝑐𝑗𝛿𝜃(∆𝜃𝑗)    (10) 
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The above expressions (8, 9, 10) indicate that at any current instant of the physical-time axis, 

the different sub-states can be viewed as a “state-time-block” wherein, all sub-states or potential 

outcomes exist but do not occur at once. Indeed, they form a “state-history” labeled by an 

ordered sequence of “state-dates” in the same manner as the normal history of an ordinary object 

through ordinary time. The transitions and holding state-times relative to the different sub-states 

form an “internal-state-clock” that governs the evolution of the system along the 𝜃 − 𝑎𝑥𝑖𝑠. The 

projection of the time-line onto the physical-time axis superposes the different sub-states 

creating the illusion that the occurrence of all these sub-states is simultaneous when in fact their 

occurrence is only partially simultaneous (i.e. only with respect to the 𝑡 − 𝑎𝑥𝑖𝑠). 

 

3.3. Measurement 

For a given system, the measurement of an observable L in the orthonormal basis of 

eigenvectors {|𝜆𝑗⟩} of L is conventionally defined by the following equation: 

𝐿|𝜆𝑗⟩ = 𝜆𝑗  |𝜆𝑗⟩   (11) 

where 𝜆𝑗 and |𝜆𝑗⟩ represent an eigenvalue and the corresponding eigenvector of the Hermitian 

operator L. 

The measurement of the observable L takes place at a specific elementary-time date 𝑡𝑒𝑚 

specified by the triplet 𝑡𝑒𝑚 = (𝑡𝑚, 𝜂𝑚, 𝜃𝑚 ). In other words, the measurement should not only 

be defined with respect to the 𝑡 − 𝑎𝑥𝑖𝑠 but also with respect to the 𝜂 − 𝑎𝑥𝑖𝑠 as well as the 𝜃 −

𝑎𝑥𝑖𝑠. Indeed, when an event is to be observed it should be done at a particular date and not at 

a bloc of dates. 

In this section, the physical-time 𝑡𝑚 and uncertainty-time 𝜂𝑚 indices are supposed to be fixed 

in order to focus only on the state-time index 𝜃. 

The state-time index 𝜃 along the 𝜃 − 𝑎𝑥𝑖𝑠 is considered as a simple index or parameter. 

However, when time is a dynamical internal variable it can be considered as a time operator 

[16]. 

Indeed, for a given system, the internal state-time transitions may be considered as an internal 

state-clock inherent to that system and is ticking in a domain limited to an interval ∆𝜃 =
[𝜃𝑎   𝜃𝑏] and wherein the corresponding wave function 𝜓(𝜃) evolves in the domain ∆𝜃 and 

vanishes to zero outside this domain ∆𝜃. In order to make a distinction between a simple 

parameter on the state-time-axis and an inherent state-time-index, the latter is simply called a 

“state-time-date”. The state-time-date is intrinsically related to the time-line of the system and 

may thus be advantageously considered as a state-time observable associated to a Hermitian 

operator 𝛩 such that: 

 𝛩|𝜃⟩ = 𝜃|𝜃⟩ for all 𝜃𝜖∆𝜃.     (12) 

Every real number 𝜃𝑚 in the domain ∆𝜃 is an eigenvalue of 𝛩, and the corresponding 

eigenvectors are thus given by Dirac’s delta functions: 

|𝜃𝑚⟩ = 𝛿(𝜃 − 𝜃𝑚)     (13) 
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The state of a system is defined at each state-time-date 𝜃𝑚 by a specific wave function 𝜓(𝜃𝑚) 

corresponding to the projection of the general wave function 𝜓(𝜃) onto the eigenvector of the 

state-time-date 𝜃𝑚 according to the following equation: 

⟨𝜃𝑚|𝜓⟩ = ∫ 𝛿(𝜃 − 𝜃𝑚)𝜓(𝜃)𝑑𝜃 =  𝜓(𝜃𝑚)
+∞

−∞
       (14) 

Advantageously, the above equation may be used to define the measurement of an 
observable at any state-time-date 𝜃𝑚 in the domain ∆𝜃.   

Indeed, let 𝛬(𝜃𝑚) be a measuring operator associated with the observable L of equation (11) 

defined by 𝐿|𝜆𝑗⟩ = 𝜆𝑗  |𝜆𝑗⟩. For 𝜃 ∈ ∆𝜃, the only possible outcomes are the eigenvalues 𝜆𝑗  of 

the observable L. The probability to find the outcome 𝜆𝑚 before a measurement is conducted 

at the state-time-date 𝜃𝑚 is given by the square module of the probability amplitude |𝑐𝑚|2. 

However, the action of the measuring operator 𝛬(𝜃𝑚) on the state-vector (i.e. 𝛬(𝜃𝑚)|𝜓(𝜃) ⟩ ) 

right at the state-time-date 𝜃𝑚 should have the property of selecting the measurement’s state-

time-date 𝜃𝑚 as well as stopping the internal process of transitions by making the measured 

outcome an absorbing state. Thus, the action of the measuring operator 𝛬(𝜃𝑚) in terms of wave 

functions may be expressed as follows: 

𝛬(𝜃𝑚)𝜓(𝜆𝑗  𝜃) = 𝐿 ∫ 𝛿(𝑐𝑚(𝜃 − 𝜃𝑚))𝜓(𝜆𝑗  𝜃)𝑑𝜃 =
𝐿

𝑐𝑚
 𝜓(𝜆𝑚 𝜃𝑚)

+∞

−∞
=

𝜆𝑚𝑐𝑚

𝑐𝑚
= 𝜆𝑚   (15) 

The term 𝛿(𝑐𝑚(𝜃 − 𝜃𝑚)) selects the wave function at the state-date 𝜃𝑚 and divides the 

corresponding sub-state |𝜆𝑚⟩  by its associated probability amplitude 𝑐𝑚, thus making the 

outcome probability equals to 1 stopping hence the mechanism of transitions. 

The above equation in terms of the state-vector can be expressed as follows: 

𝛬(𝜃𝑚)|𝜓(𝜆𝑗  𝜃)⟩ = 𝐿|𝜆𝑚⟩ = 𝜆𝑚   (16) 

These equations (15, 16) show that at the state-time-date 𝜃𝑚 of the measurement of L, the state-

vector was already at a single sub-state |𝜆𝑚⟩ and thus, the measurement outcome could not be 

anything else other than the corresponding eigenvalue 𝜆𝑚 of L without any sort of “collapse”. 

The act of measurement simply stopped the internal process of transitions.  

The above interpretation can be enlightened by a thought experiment of consecutive tossing of 

a “quantum” coin. At each time, the coin is thrown into the air so as to rotate several times 

before it is allowed to land on a table in order to measure the outcome. The whole process of 

flipping a coin could of course be modeled by classical laws of physics in function of its 

trajectory and its precession. However, without any physical foundation and only for mere 

analogical purposes, the spinning motion of the coin in the air is assimilated to a permutation 

mechanism of transitions between its two faces along a vertical state-time-axis whereas, the 

consecutive outcomes on the table is assimilated to the evolution of the coin along a horizontal 

physical-time-axis. 

The space of states is a set of two elements “head” and “tail”: {𝑒1 = 𝐻, 𝑒2 = 𝑇}. The state-

vector of the coin can be defined in an orthonormal eigenvector basis composed of two sub-

states: |𝑒1⟩ = |𝐻⟩ and |𝑒2⟩ = |𝑇⟩ for an observable L consisting of observing the “face-up” side 

of the coin: 
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𝐿|𝑒𝑗⟩ = 𝑒𝑗  |𝑒𝑗⟩;  𝑗 = 1, 2.  (17) 

According to the conventional interpretation of quantum mechanics, the normalized state-

vector of the coin while it is rotating in the air is considered to be in a “superposition” state that 

can be expressed as follows: 

|𝜓⟩ = 1 √2 ⁄ |𝐻⟩ + 1 √2 ⁄ |𝑇⟩   (18) 

When the coin falls on the table, there is only a single outcome either head or tail and according 

to the conventional quantum mechanics, this is interpreted as a collapse of the initial superposed 

state of the coin into a single sub-state. This misinterpretation comes from the fact that the face-

up side of the coin cannot be observed while it is spinning in the air and the coin was supposed 

to be simultaneously in different states. 

However, according to the present interpretation, the face-up side of the coin while it is spinning 

in the air is accounted for by assigning a “holding-state-time” for each face-up side of the coin. 

Let ∆𝜃𝐻 and ∆𝜃𝑇 be identical holding-state-times for the two sub-states |𝐻⟩ and |𝑇⟩ 
respectively. In this case, the normalized state of the flipping coin while it is in the air should 

be represented as follows:  

|𝜓⟩ = 1 √2 ⁄ 𝛿𝜃(∆𝜃𝐻) |𝐻⟩ + 1 √2 ⁄ 𝛿𝜃(∆𝜃𝑇) |𝑇⟩    (19) 

The only possible outcomes are the eigenvalues |𝑒1⟩ = |𝐻⟩ and |𝑒2⟩ = |𝑇⟩ of the observable L. 

The probability to find the outcome 𝑒𝑚 = (𝑒1𝑜𝑟 𝑒2) before a measurement is conducted at the 

state-time-date 𝜃𝑚 is 1 2⁄ . 

The outcome can be observed with respect to the physical-time-axis only when the table (i.e., 

the measuring apparatus) stops the flipping mechanism of the coin. Indeed, only when the coin 

settles down on the table that can be said whether the outcome is head or tail. Thus, when the 

coin lands on the table at the landing-state-time-date 𝜃𝑚, the transition process comes to an end 

and the measured outcome becomes an absorbing state with a probability equals to 1. In 

particular, if 𝜃𝑚 ∈ ∆𝜃𝐻 (i.e. if the θ-time landing of the coin occurred during the holding time 

relative to the “H” sub-state), then the measured outcome is “H” otherwise it is “T”. 

Thus, by applying equation (15) to the example of the coin, the measuring operator 

𝛬(𝜃𝑚) associated with the observable L can be expressed as follows: 

𝛬(𝜃𝑚)𝜓( 𝜃) = 𝐿 ∫ 𝛿(1 √2 ⁄ (𝜃 − 𝜃𝑚))𝜓(𝜃)𝑑𝜃 =
𝐿

1 √2 ⁄
 𝜓(𝜃𝑚)

+∞

−∞
= {

𝐻 𝑖𝑓 𝜃𝑚 ∈ ∆𝜃𝐻,
𝑇 𝑖𝑓 𝑛𝑜𝑡

  (20) 

The above equation in terms of the state-vector can be expressed as follows: 

𝛬(𝜃𝑚)|𝜓( 𝜃)⟩ =
𝐿

1 √2 ⁄
|𝜓(𝜃𝑚)⟩ = {

|𝐻⟩ 𝑖𝑓 𝜃𝑚 ∈ ∆𝜃𝐻,
|𝑇⟩ 𝑖𝑓 𝑛𝑜𝑡

    (21) 

Meanwhile, the consecutive outcomes on the table continue to be governed by a Bernoulli 

process in the same way that a quantum system continues to be governed by a Schrödinger 

equation between two measurements along the physical-time-axis. 

 

3.4. Entanglement 



9 
 

Consider a quantum system composed of first and second entangled particles travelling in 

different directions. Suppose {|𝜆𝑘⟩} and {|𝜑𝑙⟩} are two eigenbasis of the first and second 

particles respectively. The composite state of the quantum system is defined by the tensor 

product which can be expressed as follows: 

 |𝜆𝑘𝜑𝑙⟩ = |𝜆𝑘⟩ ⊗ |𝜑𝑙⟩     (22) 

Similarly to equation (8), the state-vector |𝜓(𝜃)⟩ in the composite space of states of the two 

particles can be expressed in function of the vector projections in the eigenbasis {|𝜆𝑘𝜑𝑙⟩} of an 

observable L as follows: 

|𝜓(𝜃)⟩ = ∑ 𝑐𝑗𝛿𝜃(∆𝜃𝑗)𝑘𝑙𝑗 |𝜆𝑘𝑗𝜑𝑙𝑗⟩  (23) 

where as in equation (9), 𝛿𝜃(∆𝜃𝑗) is the Dirac measure that labels and orders the composite sub-

states |𝜆𝑘𝜑𝑙⟩ along the 𝜃 − 𝑎𝑥𝑖𝑠 and where the first and second parts of the ket represent the 

sub-states of the first and second particles respectively. 

The composite sub-states |𝜆𝑘𝜑𝑙⟩ do not occur at once. Only one composite sub-state exists at 

each state-time-date 𝜃 and the transition from one composite sub-state into another is governed 

by the internal-state-clock. Indeed, the internal-state-clock governs the entangled system as a 

single entity thus, synchronizing the transitions of both particles. 

For simplicity, the indices 𝑘 and  𝑙 are dropped from equation (23) and the eigenbasis of the 

composite state is simply written as {|𝜆, 𝜑⟩}. The wave function 𝜓(𝜆𝑗 , 𝜑𝑗 , 𝜃) associated to the 

above state-vector |𝜓(𝜃)⟩ in the eigenbasis {|𝜆, 𝜑⟩}, is given by the set of coefficients  

𝑐𝑗𝛿𝜃(∆𝜃𝑗) as follows: 

𝜓(𝜆𝑗 , 𝜑𝑗, 𝜃)  = ⟨𝜆𝑗𝜑𝑗|𝜓⟩ = 𝑐𝑗𝛿𝜃(∆𝜃𝑗)   (24) 

On the other hand, suppose that |𝜆𝑘𝜑𝑙⟩ is an eigenvector of the observable L, with eigenvalue 

𝜆𝑘𝜑𝑙, then this can be expressed as follows: 

 𝐿|𝜆𝑘𝜑𝑙⟩ = 𝜆𝑘𝜑𝑙|𝜆𝑘𝜑𝑙⟩   (25) 

Thus, the action of the measuring operator 𝛬(𝜃𝑚) on (for example) the first particle at the state-

time-date 𝜃𝑚, associated with the observable L of equation (25) can be expressed as follows: 

𝛬(𝜃𝑚)𝜓(𝜆𝑗 , 𝜑𝑗 , 𝜃) = 𝐿 ∫ 𝛿(𝑐𝑚(𝜃 − 𝜃𝑚))𝜓(𝜆𝑗𝜑𝑗𝜃) 𝑑𝜃 =
𝐿

𝑐𝑚
 𝜓(𝜆𝑚𝜑𝑚𝜃𝑚)

+∞

−∞
= 𝜆𝑚𝜑𝑚  (26) 

The measurement of the observable L is made while the system is in the state |𝜆𝑚𝜑𝑚⟩ and thus, 

as shown by equation (26), the observed value of the measurement is the eigenvalue 𝜆𝑚𝜑𝑚 

with certainty. 

The entangled system has the same real-time-line but of course, the constituents can move in 

different directions of space. Each sub-state has its own time-filament associated with both 

entangled particles. Once a sub-state is detected, it will constitute by itself (after detection) the 

whole time-line, all other sub-states were not present (either they have already existed or they 

did not exist yet with respect to the 𝜃 − 𝑎𝑥𝑖𝑠) and thus the real-time-line continues to evolve 

according to the detected sub-state. 
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The action of measurement on the first particle fixes the outcome for both particles simply 

because the transitions stop for both particles. In other words, the internal-state-clock 

synchronizing the transition of states of both particles stops ticking and thus, the action of 

measurement on any particle fixes the outcome result for both particles. Both particles can thus 

be considered as “connected” by the same time-filament at each ticking of the internal state-

clock. 

Consider for example an entangled system of two particles characterized by two spins specified 

by the z components travelling in opposite directions and emanating from a source midway 

between two detectors. The composite state of the two-spin system is a tensor product having 

the following basis vectors [17]: 

|𝑢𝑢⟩ ; |𝑢𝑑⟩ ; |𝑑𝑢⟩ ; |𝑑𝑑⟩  (27) 

where the u stands for spin “up” and the d for spin “down” and where the first and second parts 

of the ket represent the states of the first and second particles respectively. 

Let the two-spin system be in a maximally entangled state corresponding to the singlet state 

|𝑠𝑖𝑛𝑔⟩ expressed as follows: 

|𝑠𝑖𝑛𝑔⟩ = 𝑐1|𝑢𝑑⟩ + 𝑐2|𝑑𝑢⟩  (28) 

By taking into account the transitions along the 𝜃 − 𝑎𝑥𝑖𝑠, the above expression (28) becomes:  

|𝑠𝑖𝑛𝑔(𝜃)⟩ = 𝑐1𝛿𝜃(∆𝜃1)|𝑢𝑑⟩ + 𝑐2𝛿𝜃(∆𝜃2)|𝑑𝑢⟩   (29) 

As the two sub-states have equal expectations, then ∆𝜃1 and ∆𝜃2 are considered to have the 

same measure: 𝜇(∆𝜃1) = 𝜇(∆𝜃2) = 1/2 and as |𝑐𝑗|
2

= 𝜇(∆𝜃𝑗) then 𝑐1 = 𝑐2 = 1/√2 and 

equation (29) becomes: 

|𝑠𝑖𝑛𝑔(𝜃)⟩ = 1/√2 𝛿𝜃(∆𝜃1)|𝑢𝑑⟩ + 1/√2 𝛿𝜃(∆𝜃2)|𝑑𝑢⟩   (30) 

Thus, making a measurement on the state-vector |𝑠𝑖𝑛𝑔(𝜃)⟩, at state-time-date 𝜃𝑚 and at any 

location in space is defined by applying onto the state-vector the measuring operator 𝛬(𝜃𝑚): 

𝛬(𝜃𝑚)|𝑠𝑖𝑛𝑔(𝜃)⟩ = {
|𝑢𝑑⟩ 𝑖𝑓 𝜃𝑚𝜖∆𝜃1

|𝑑𝑢⟩ 𝑖𝑓 𝜃𝑚𝜖∆𝜃2
    (31) 

Thus, the measuring operation on either one of the two particles defines the outcome of both 

particles and the transition mechanism stops, thus, making the measured outcome an absorbing 

state. In other terms, the internal-state-clock governing the whole system composed of both 

particles stops ticking and thus, if a measurement is made on the second particle the outcome 

will be the opposite of what was already measured on the first particle. 

Both particles are “connected” by the same time-line composed of an ordered sequence of two 

time-filaments corresponding to sub-states |𝑢𝑑⟩ and |𝑑𝑢⟩ respectively. In other words, the state 

transition of both particles is synchronized by the same internal-state-clock, and thus, when a 

measurement is made at either side, the internal-state-clock simply stops the transition into any 

other sub-state as shown in equation (31). 

In order to illustrate entanglement, Susskind [17] gives an example of two classical computers 

connected by a cable simulating the quantum mechanics of a two-spin system. As long as the 
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computers are connected, entanglement can be simulated but once the computers are 

disconnected the simulation is destroyed. According to the present model of time, the 

“connecting cable” can be regarded to be the internal-state-time-clock that synchronizes the 

transitions of both particles. 

The internal-state-time-clock can be tested by conducting an experiment similar to the one 

realized by Ekaterina [18] illustrating Page and Wootters’ mechanism of static time [19, 20]. 

Ekaterina’s experiment implemented the mechanism of static time using the entangled state of 

the polarization of two photons, one of which is used as a clock to gauge the evolution of the 

second. An “internal” observer that becomes correlated with the clock photon sees the other 

system evolve, while an “external” observer that only observes global properties of the two 

photons can prove it is static.  In order to verify the existence of an “internal-state-time-clock”, 

a comparable experiment can possibly be conducted in which the evolution seen by an 

“external” observer along the physical-time axis is static while the dynamic evolution of the 

different states along the state-time-axis could probably be correlated to an “internal” observer. 

 

3.5. Evolution along the uncertainty-time-axis 

If two operators of a quantum system do not commute, then a state vector |𝜓⟩ of one observable 

cannot be a state vector of the other observable and thus, the result of any “simultaneous” 

measurement of both observables at any current physical-time instant 𝑡 is uncertain. However, 

according to the present model of time, there exists an “internal” mechanism of transitions along 

the uncertainty-time-axis (𝜂 − 𝑎𝑥𝑖𝑠) between different state-vectors defined in different 

eigenbasis relative to non-commuting observables. In other words, for a fixed couple of 

physical-time-index and state-time-index (𝑡0, 𝜃0), the state of the quantum system evolves from 

one chain of sub-states into another. The “internal” mechanism of transitions along the 𝜂 −

𝑎𝑥𝑖𝑠 can be represented by a permutation process in a state space defined by a set of different 

representations of state-vectors relative to non-commuting observables, wherein, each state-

vector evolves along the 𝜃 − 𝑎𝑥𝑖𝑠 (as described in section 3.2) between its different sub-states 

|𝜆𝑖(𝜃)⟩ of its corresponding eigenvectors {|𝜆𝑖(𝜃)⟩}. 

The evolution of a quantum system |𝑆⟩ along the 𝜂 − 𝑎𝑥𝑖𝑠 can thus be defined as follows: 

|𝑆⟩ = ∑ 𝛿𝜂(∆𝜂𝑘)𝑘 |𝜓𝑘⟩  (32) 

 

where  𝛿𝜂(∆𝜂𝑘) = {
1 𝑖𝑓 𝜂 𝜖∆𝜂𝑘 
0 𝑖𝑓 𝑛𝑜𝑡

 and |𝜓𝑘⟩ = ∑ 𝑐𝑘𝑗𝛿𝜃(∆𝜃𝑘𝑗)𝑘 |𝜆𝑘𝑗⟩.  (33) 

Thus, the evolution of the quantum system |𝑆⟩ in the time-plane (𝜂, 𝜃 ) can be defined as 

follows: 

|𝑆⟩ = ∑ 𝛿𝜂(∆𝜂𝑘)𝑐𝑘𝑗𝛿𝜃(∆𝜃𝑘𝑗)𝑘𝑗 |𝜆𝑘𝑗⟩   (34) 

In view of the above, it is clear that no measurement can be realized “simultaneously” with 

respect to two non-commuting observables simply because the state vector |𝜓⟩ of one 

observable cannot exist at the same uncertainty-date as the state vector |𝜓⟩ of another non-

commuting observable. There can only be a “partial simultaneity” with respect to a physical-
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time-date and a state-time-date (𝑡0, 𝜃0) where only one conjugate variable exists and can be 

measured but there can never be a “total simultaneity” with respect to a global date including 

an uncertainty-index and thus, there can never be “total simultaneous” measurement of non-

commuting observables. 

In general, the measurement of the quantum system |𝑆⟩ with respect to an observable A at a 

specific “global-time-date” (𝑡𝑚, 𝜂𝑚, 𝜃𝑚) where the physical time index 𝑡𝑚 is considered to be 

initially fixed, may be expressed by the action of a corresponding measuring operator 

𝛬( 𝜂𝑚, 𝜃𝑚) on the wave function 𝜓(𝑡𝑚, 𝜂, 𝜃) as follows: 

𝛬( 𝜂𝑚, 𝜃𝑚)𝜓(𝑡𝑚, 𝜂, 𝜃) = 𝐴 ∫ 𝛿(𝑐𝑚(𝜃 − 𝜃𝑚))𝛿(𝜂 − 𝜂𝑚)𝜓(𝑡𝑚, 𝜂, 𝜃)𝑑𝜃
+∞

−∞
   (35) 

and thus: 

𝛬(𝜂𝑚, 𝜃𝑚)𝜓(𝑡𝑚, 𝜂, 𝜃) =
𝐴

𝑐𝑚
𝜓(𝑡𝑚, 𝜂𝑚, 𝜃𝑚)   (36) 

Thus, the action of the measuring operator 𝛬( 𝜂𝑚, 𝜃𝑚) on the wave function 𝜓(𝑡𝑚, 𝜂, 𝜃) selects 

the measurement’s uncertainty-time-date 𝜂𝑚 and state-time-date 𝜃𝑚 and stops the internal 

process of transitions. 

 

3.6 Estimation of time-thickness 

As indicated in section 3.3, the state-time-date may be considered as a state-time observable 

associated to a Hermitian operator 𝛩 according to equation (12). The state of a system is defined 

at each state-time-date 𝜃𝑚 by the specific wave function 𝜓(𝜃𝑚) of equation (14). 

A Hermitian energy operator 𝐻 can thus be defined with respect to the state-time-axis and its 

action on the wave function 𝜓(𝜃) may be represented as follows: 

𝐻𝜓(𝜃) = −𝑖ℏ 𝜕𝜓(𝜃) 𝜕𝜃⁄     (37) 

The eigen-equation can be expressed as follows: 

−𝑖ℏ 𝜕𝜓𝐸(𝜃) 𝜕𝜃⁄ = 𝐸𝜓𝐸(𝜃)    (38) 

where E and 𝜓𝐸(𝜃) are the eigenvalue and eigenvector respectively of the Hermitian energy 

operator 𝐻. The solution of the above equation is given by the following expression: 

𝜓𝐸(𝜃) =
1

√2
𝑒

𝑖𝐸𝜃

ℏ     (39) 

 Therefore, the period along the state-time axis with respect to equation (39) is: 

∆𝜃 = 2𝜋ℏ 𝐸⁄     (40) 

The same kind of analysis can be made concerning position and momentum with respect to the 

uncertainty-time-axis. In that case, the wave length is defined as: 

𝐿 = 2𝜋ℏ 𝑝⁄    (41) 

and thus, the period along the uncertainty-time axis may be estimated to be: 

∆𝜂 = 𝐿 𝑐⁄ = 2𝜋ℏ 𝑐𝑝⁄     (42) 
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Thus, time-thickness of a physical system depends on its energy and momentum which can be 

determined by the Schrodinger equation along the physical-time-axis. 

For a given state-vector |𝜓⟩, the thickness of its corresponding real-time-line depicts a more 

logical representation of quantum phenomena such as “wave function collapse”, entanglement 

and uncertainty. 

However, time-thickness for macroscopic phenomena is very small to be noticeable and can be 

neglected. Nevertheless, it becomes important for short living phenomena and in particular, at 

the early stage of the universe where it should be taken into consideration as it will be seen in 

the next section. 

 

4. Cosmic features of a dynamical time-line 

The thickness of time is very small to be noticeable in a macroscopic universe. However, in a 

microscopic universe or in other words, at the beginning of the universe, the thickness of time 

should not be neglected. Indeed, as the physical-time tends to zero, the measures of state-time 

and uncertainty time should have been comparable to that of the physical-time and at a very 

early stage should have even been bigger than the physical-time owing to the fact that state and 

uncertainty times are internal clocks. Therefore, in order to understand the phenomena that took 

place at the beginning of the universe, time-thickness should be taken into consideration. 

In order to illustrate the effect of time-thickness, the global-time-tube metric of equation (1) 

should be used to generate an appropriate spacetime metric. 

The approach explained by Carroll [21] is used to derive an appropriate metric that takes into 

consideration the above element of the global-time-tube. A spatially homogenous and isotropic 

Universe evolving within a global-time-tube can be represented at each point of the global-

time-tube by spacelike three-dimensional slices such that each slice is maximally symmetric. 

Thus spacetime is considered to be 𝑹𝟑𝜮 where 𝑹𝟑 represents a three-dimensional time metric 

and 𝜮 is a maximally symmetric three-dimensional space metric. The six-dimensional 

spacetime can thus be expressed by the following sort of Robertson-Walker metric: 

𝑑𝑠2 = −𝑑𝑡𝐺
2 + 𝑎2(𝑡𝐺)𝑑𝜎2        (43) 

where 𝑡𝐺  is the global-time-tube, 𝑎(𝑡𝐺) is a dimensionless scale factor and 𝑑𝜎2 is the metric on 

𝜮. 

The above metric of equation (43) obeys the following Friedman equations: 

𝐻2 =
8𝜋𝐺

3
𝜌 −

𝑘

𝑎2              (44) 

�̈�

𝑎
= −

4𝜋𝐺

3
(𝜌 + 3𝑝)         (45) 

where 𝑎 is the scale factor that stands for 𝑎(𝑡𝐺), 𝐻 is the Hubble parameter, 𝐺 is the 

gravitational constant, 𝜌 is the energy density, 𝑘 is the spatial curvature, and 𝑝 is the pressure. 

Friedmann equation (44) can equivalently be written in the following form: 

|𝛺 − 1| =
|𝑘|

𝑎2𝐻2
     (46) 
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where 𝛺 is the density parameter measuring the ratio between the density and the critical density 

and where a flat space is represented by 𝛺 = 1 [13, 20]. 

For simplicity, the time-tube is restricted to the plane (𝑡, 𝜃) which would be enough to illustrate 

the effect of time-thickness on the expansion of the universe. 

In that case, by taking into consideration the metric of equation (1), an element of the global-

time-tube in the plane (𝑡, 𝜃) at the beginning of the big bang (i.e., t being very small) may be 

expressed as follows: 

𝑡𝐺
2~𝑡2 + θ 2     (47) 

After introducing, the above element of the global-time-tube, the scale factor for a universe 

dominated by only one kind of energy density (which indeed should have been the case at the 

beginning of the universe) is given by the following relation: 

 𝑎 ∝ 𝑡𝐺
2

𝑛⁄ ~(𝑡2 + θ 2)
1

𝑛⁄           (48) 

Differentiating the above expression with respect to the physical time t gives: 

�̇� ∝
2𝑡

𝑛
(𝑡2 + θ 2)

1
𝑛⁄ −1    (49) 

Differentiating again with respect to t gives: 

 �̈� ∝
2(𝑡2+𝜃2)

1
𝑛⁄ −2

𝑛
(θ 2 −

𝑛−2

𝑛
𝑡2)     (50) 

The first term is positive and thus: 

 �̈� > 0 when 𝑡 < √
𝑛

𝑛−2
𝜃    (51) 

 Let  𝜏 = √
𝑛

𝑛−2
𝜃      (52) 

where 𝜏 represents the physical time below which, the Universe was in an inflation-era. 

Introducing the estimation of time-thickness of equation (40) into equation (52) gives:   

𝜏 = 2𝜋ℏ√
𝑛

𝑛−2
𝐸⁄     (53) 

At the beginning, the universe was radiation-dominated (i.e. n=4, 𝑝 =
𝜌

3⁄ ) and thus the 

inflation era is given by: 

𝜏 = 2√2𝜋ℏ 𝐸~ ℎ 𝐸⁄⁄    (54) 

Equation (54) gives an estimation of the inflation era in function of the energy at the beginning 

of the Universe. 

On the other hand, by substituting �̈� > 0  into the Friedmann equations (44, 45), the following 

inequalities are derived : 

 𝑝 <
𝜌

3⁄    (55) 
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𝑑(𝐻−1

𝑎⁄ )

𝑑𝑡
< 0   (56) 

In particular, relation (56) forces the value of 𝛺 in equation (46) to 1 which solves the flatness 

problem. This scenario explains the observed flatness and isotropy of the Universe without the 

need to introduce any kind of “dark energy”. 

However, according to this scenario, the space inflation seems to be more of an illusion and it 

simply results out of observing the inflation-era with respect to the very small scale (𝑡 < 𝜏) of 

the physical-time axis. Indeed, for 𝑡 < 𝜏, the length of the global-time-tube 𝑡𝐺  is greater than 

that of the physical time t (𝑡𝐺~√𝑡2 + θ 2 > 𝑡) and thus, the real period of time is greater than 

that of the physical time. In other words, the expansion of the universe during the inflation era 

lasted more than what would be expected by an observer who traces the history only along the 

physical-time axis. 

On the other hand, for 𝑡 ≥ 𝜏, �̈� ≤ 0 and thus, the inflation stops at 𝑡 = 𝜏 and the acceleration 

decreases for 𝑡 > 𝜏. 

For 𝑡 ≫ 𝜏,  the projections of the global-time-tube on the state-time-axis and on the uncertainty-

time-axis can be neglected as they are very small compared to that on the physical-time axis. 

The global-time-tube can simply be approximated by its projection on the physical-time axis 

(i.e. 𝑡𝐺~𝑡). Thus, far from the inflation-era the global-time-tube behaves almost as the familiar 

physical time. 

However, depending on the energy density of the universe, the curvature of spacetime should 

affect the dynamical relation between the different components of time. In other words, the 

global-time-tube becomes more or less curved and this in its turn should affect the apparent rate 

of expansion of the universe. For example, if the “length” of the global-time-tube is greater than 

its projection on the physical-time axis, then the universe would seem to be spatially inflating 

if the physical-time-axis is the only one to be considered and not the real “length” of the global-

time. The present observations seem to indicate that the universe is inflating and this apparent 

inflation could be simply explained by the dynamic nature of time without the need to introduce 

any kind of black energy. Indeed, many papers questioned the foundations of black energy. In 

particular, Gibson [22, 23] have showed that dark energy seems to be in contradiction with fluid 

mechanics. Thus, an alternative fluid mechanically based cosmology HGD (hydro-

gravitational-dynamics) has been proposed by Gibson and Schild [24] where dark energy and 

dark matter are not necessary to explain the expansion and structure formation of the Universe. 

Moreover, HGD predicts a different rate of formation of galaxies and black holes [25] than the 

standard model. 

 

5. Conclusion  

This dynamic nature of time “reconciles” the different interpretations of quantum mechanics. 

Indeed, a “collapse of a wave function” becomes “halting inner transitions”, “multi worlds” 

become “multi-real-time-filaments” and finally “hidden variables” become “internal-clocks” or 

“time-thickness”.  On the other hand, time-thickness and the dynamic nature of time also 

explain some cosmological features such as space flatness and isotropy of the universe. 
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