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Abstract 

Bianchi Type V inflationary cosmological model with massless scalar field and 

flat potential and decaying vacuum energy density is investigated. To get the 

deterministic solution in terms of cosmic time t, we assume that the decaying 

vacuum energy density where R is scale factor, α a constant, we find that 

the spatial volume increases exponentially indicating the inflationary scenario in 

the model. The model represents decelerating and accelerating phases both which 

matches with the recent astronomical observations. The anisotropy is maintained 

throughout in the model. However, for large values of time (T), the model 

isotropizes, where T is rescaling of cosmic time t. The rate of Higgs field decreases 

slowly with time. The model has Point Type Singularity at  T = 0. 

(MacCallum(1971)) 

1 Introduction 

 Bianchi models are significant in the study because these models are 

homogeneous and anisotropic from which the process of isotropization of the 

universe is studied through the passage of time. The study of Bianchi Type V 

cosmological models create more interest in the study because these models are 

anisotropic generalization of open FRW models and allow arbitrarily small  
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anisotropy levels at any constant of cosmic time. Bianchi Type V models have 

been studied in detail by number of authors viz. Farnsworth(1967), Collins(1974), 

Maartens and Nel(1978), Wainwright et al.(1979), Roy and Singh(1983), Banerjee 

and Sanyal(1988), Coley(1990), Bali and Meena(2004), Bali and Kumawat(2008). 

 Inflationary universes create more interest in the study because these 

universes play a significant role in solving number of outstanding problems in 

cosmology like homogeneity, the isotropy, the horizons, flatness and primordial 

monopole problem in grand unified field theories. Cosmic inflation was first 

pioneered by starobinsky (1979). Guth(1981) introduced the concept of inflation 

while investing the problem of why we do not see magnetic monopole today. He 

found that a positive-energy false vacuum generates an exponential expansion of 

space in general relativity. In particular, our universe is homogeneous and 

isotropic to a very high degree of precision. Such a universe is described by FRW 

space-time. Several version of inflationary scenario are studied by number of 

authors viz. Linde(1982), Wald(1983), Barrow(1987), Burd and Barrow(1988), La 

and Steinhardt(1989) in FRW space-time. Rothman and Ellis(1986) have pointed 

out that we can have a solution of isotropic problem if we work with anisotropic 

metric and these metrics can be isotropized under very general circumstances. 

Stein-Schabes(1987) has shown that inflation will take place if effective potential 

V(φ) has flat region while Higgs field evolves slowly but the universe expands in 

an exponential way due to vacuum field energy. Therefore, it is interesting to 

investigate inflationary scenario in anisotropic metric which isotropizes at late time 

or in a very general circumstances. Keeping such type of investigations, Bali and 
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Jain(2002) investigated inflationary scenario in LRS Bianchi Type I space-time in 

the presence of massless scalar field with flat potential. Recently Bali(2011) 

investigated inflationary scenario in Bianchi Type I space-time with flat potential 

considering the scale factor  

 The cosmological constant (Λ) was introduced by Einstein to find the 

solution of static universes because at that time universe was supposed to be static. 

But after the discovery of Hubble constant, it was realized that universe is 

expanding. Also FRW obtained an expanding dust filled homogeneous and 

isotropic model in which there was no need to introduce the cosmological constant 

(Λ) into the Einstein’s field equations. Einstein rejected the introduction of Λ term 

into his field equations after the realization that universe is expanding. A wide 

range of observations suggest that the cosmological constant Λ is the most 

favourable candidate of dark energy representing energy density of vacuum. The 

dark energy driven accelerating universe comsology with a small cosmological 

constant was put forward by Siddharth (1998). After that, two independent groups 

led by Riess et al.(1998) and Perlmutter et al.(1999) used Type Ia Supernovae and 

showed that universe is accelerating. This discovery provided the first direct 

evidence that Λ is non-zero with Λ ~ 1.7 x 10&121 Planck units. It is now commonly 

believed by Scientific community that via the cosmological constant, a kind of 

repulsive pressure dubbed as dark energy, is the most suitable candidate to explain 

recent observations that universe appears to be expanding and accelerating. 

According to the first year data not of Supernovae Legacy Survey (SNLS), dark 
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energy behaves like the cosmological constant to a precision of 10% (Astier et 

al.(2007)). ΛCDM models agree closely with almost all the established 

cosmological abbreviations. Obviously, this extremely small value of cosmological 

constant, indicates that vacuum energy density (Λ) is not a strict constant but 

decays as the universe expands. Corda (2009) pointed out that accelerating 

universe cosmology can be explained by extended theories of gravity. Recently 

Barrow and Shaw(2011) suggested that cosmological constant term corresponds to 

a very small value of the order of 10&122 when applied to Friedmann universe. A 

number of cosmological .models in which Λ decays with time have been 

investigated by several authors viz. Bertolami(1986), Ram(1990), Berman(1991), 

Beesham(1993), Sahni and Starobinski(2000), Bronnikov et al.(2004), Singh and 

Chaubey(2006), Singh et al.(2007), Bali and Singh(2008), Ram and Verma(2010), 

Bali et al.(2012) and Saha(2013). 

 In this paper, we have investigated inflationary scenario in Bianchi Type V 

space-time with flat potential and decaying vacuum energy density (Λ). We find 

that spatial volume increases exponentially indicating inflationary scenario in the 

model. The vacuum energy density Λ decreases with time. The model describes a 

unified expansion history of the universe indicating decelerating and accelerating 

phases both. The anisotropy is maintained throughout. However, if the constant L 

= 0 then the model isotropizes. The constant L appears due to integration of 

equation (19). The rate of Higgs field decreases slowly with time but universe 

expands. 

2. Metric and Field Equations 
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 We consider Bianchi Type V line-element given by Ryan and Shepley 

(1975) in orthogonal form as 

    (1) 

where A, B, C are metric potentials and functions of t- alone. 

 We assume the coordinates to be comoving so that   

The Einstein’s field equations (in gravitational units 8πG = c = 1) with time 

varying cosmological term Λ(t) are given by Kramer et al. (1980) as  

        (2) 

with 

      (3) 

and 

       (4) 

where φ is Higgs field. 

The field equations (2) for the line-element (1) lead to 

      (5) 

      (6) 

      (7) 

      (8) 
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         (9) 

The equation for scalar field (4) leads to 

        (10) 

3. Solution of Field Equations 

 We are interested in inflationary solution so flat region is considered. Thus 

V(φ) is constant. Now equation (10) leads to 

        (11) 

From equation (11), we have 

          (12) 

where ℓ is constant of integration. 

The scale factor R is given by 

        (13) 

as BC = A2 from equation (9). Equations (5) and (8) lead to 

      (14) 

where V(φ) = constant  = k. To get the deterministic solution, we assume that 

  as considered by Chen and Wu (1990). 

For the sake of simplicity, we take 

 α = 2          (15) 
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Thus equations (14) and (15) lead to 

       (16) 

Using equation (9) in equation (16), we have 

       (17) 

Equations (6) and (7) lead to 

        (18) 

which again leads to 

       (19) 

       using equation (9) 

To find the solution, we assume  and , thus from equation (19), we 

have 

         (20) 

where L is constant of integration. To find the solution of equation (17) and (20), 

we put that  Thus equations (17) and (20) lead to 

         (21) 

and 

          (22) 
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To find the solution of equation(21), we assume that . Thus 

 . 

Now equation (21) leads to 

  

which leads to 

         (23) 

Equation (23) leads to 

        (24) 

where . From equation (24), we have 

        (25) 

γ2 being constant of integration. Now equations (22) and (25) lead to 

        (26) 

where  being constant of integration and T is mere rescaling of 

t. 

       (27) 
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   (28) 

    (29) 

After suitable transformation of coordinates, the metric (1) leads to the form 

 

      (30) 

where 

  

  

  

4 Some Physical and Geometrical Aspects 

The vacuum energy density (Λ) is given by 

       (31) 

The rate of Higgs field (φ) is given by equation (12) as 

         (32) 
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which leads to 

        (33) 

where N is constant of integration. 

 The spatial volume (R3) for the model (30) is given by 

         (34) 

The expansion (θ), shear (σ), the deceleration parameter (q) are given by 

 

           (35) 

    (36) 

       (37) 

5 Conclusion 

 We observe that expansion (θ), shear (σ) and vacuum energy density (Λ) all 

diverge at T = 0. The model (30) starts expanding with a big-bang from its singular 

state at T = 0 and tends to a finite limit at late time. The spatial volume (R3) 

increases  exponentially as T increases. Thus the model represents inflationary 

scenario. The model has Point Type singularity at T = 0 (Maccallum (1971)) For 

large values of T,  0 which implies that the model approaches isotropy at late 
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times. When T → 0 then is finite. Hence the model represents anisotropic 

space-time initially and isotropizes at late times. The model describes a unified 

expansion history of the universe which starts with decelerating expansion and the 

expansion accelerates at late time. The decelerating expansion at initial epoch 

provides obvious provision for the formation of large structure in the universe. The 

formation of structure is better supported by decelerating expansion. Thus the 

model is astrophysically relevant. Also late time acceleration is in agreement with 

the observations of 16 type Ia supernovae made by Hubble space Telescope (HST) 

(Riess et al.(2004)). The vacuum energy density (Λ) is initially large but decreases 

with time. This result matches with astronomical observations. The rate of Higgs 

field decreases slowly. 
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