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The loop quantum cosmological effects which might lead to a 
cyclic universe are reviewed. We concentrate on isotropic 
loop quantum cosmology coupled with a massless scalar 
field. By semiclassical analysis, the effective Hamiltonian 
constraints for different proposed Hamiltonian operators are 
obtained, which incorporate also the next to leading order 
quantum corrections. It turns out that the classical big bang 
singularity will get replaced by a quantum bounce in all 
scenarios. Moreover, if the semiclassicality of the model is 
maintained in the large scale limit, there are great 
possibilities for k = 0 Friedmann expanding universe to 
undergo a recollapse in the future due to the quantum gravity 
effect. Thus the quantum bounce and recollapse may 
contribute a cyclic universe. The above results of canonical 
effective Hamiltonian constraints can also be justified by the 
coherent state path-integral approach of loop quantum 
cosmology.
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The loop quantum cosmological effects which might lead to a cyclic universe are reviewed. We
concentrate on isotropic loop quantum cosmology coupled with a massless scalar field. By semiclas-
sical analysis, the effective Hamiltonian constraints for different proposed Hamiltonian operators are
obtained, which incorporate also the next to leading order quantum corrections. It turns out that
the classical big bang singularity will get replaced by a quantum bounce in all scenarios. Moreover,
if the semiclassicality of the model is maintained in the large scale limit, there are great possibilities
for k = 0 Friedmann expanding universe to undergo a recollapse in the future due to the quantum
gravity effect. Thus the quantum bounce and recollapse may contribute a cyclic universe. The
above results of canonical effective Hamiltonian constraints can also be justified by the coherent
state path-integral approach of loop quantum cosmology.
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As a background independent quantum theory of grav-
ity, loop quantum gravity (LQG) has been rather active
in recent twenty-five years (Ashtekar et al. 2004; Han et
al. 2007; Rovelli, 2004; Thiemann, 2007). The expecta-
tion that the singularities predicted by classical general
relativity (GR) would be resolved by some quantum grav-
ity theory has been confirmed by the recent study of cer-
tain isotropic models in loop quantum cosmology (LQC)
(Bojowald, 2001; Ashtekar et al. 2006a,b), which is a
simplified symmetry-reduced model of LQG (Bojowald,
2005; Ashtekar, 2009). The basic purpose of LQG is to
merge the conceptual insight of GR into quantum me-
chanics. To achieve this purpose, one only makes use of
the general tools of a quantum theory. The Hilbert space
and operators are obtained from classical GR following
certain quantization strategy. In contrast to the initial
Wheeler-DeWitt canonical quantization of GR (Wheeler,
1962; Dewitt, 1967), the classical algebra that one wants
to represent on the Hilbert space of LQG is based on the
holonomies of the gravitational connection. Physically,
holonomies are natural variables representing Faraday’s
’lines of force’, that do not refer to what happens at a
point, but rather refer to the relation between different
points connected by a line. Mathematically, the quan-
tum configuration space of LQG can be constructed by
the concept of holonomy, since its definition does not
depend on an extra background. It turns out that the
kinematical framework of LQG can be established with
mathematical rigour.

In the models of LQC, the idea that one should view
holonomies rather than connections as basic variables for
the quantization of gravity is successfully carried on (Bo-
jowald, 2000; Ashtekar et al. 2003a). In a LQC sce-
nario for a universe filled with a massless scalar field, the
classical singularity gets replaced by a quantum bounce
(Ashtekar et al. 2006a,b). Various features of the bounce
have been revealed through different considerations (Bo-
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jowald, 2007a,b,2008; Corichi et al. 2008). While the
model shows that the quantum effect played the key role
in Planck scale to cure the big bang singularity as one
expected, the question whether quantum gravity effect
can also be manifested in large scale cosmology is being
studied (Ding et al. 2009; Yang et al. 2009a,b). This
question is crucial since, besides overcoming the difficul-
ties of a classical theory, to predict phenomena which are
dramatically different from those of the classical theory
is also a hallmark to identify a quantum theory.

We are going to review the loop quantum cosmologi-
cal effects which might lead to a cyclic universe in spa-
tially flat (k = 0) FRW model. We consider the so-
called improved dynamics framework of LQC (Ashtekar
et al. 2006b). In the kinematical setting, one has to
introduce an elementary cell V and restricts all integra-
tions to this cell. Fix a fiducial flat metric oqab and
denote by Vo the volume of V in this geometry. The
gravitational phase space variables —the connections
and the density-weighted triads — can be expressed as

Ai
a = c V

−(1/3)
o

oωi
a and Ea

i = p V
−(2/3)
o

√
oq oeai , where

(oωi
a,

oeai ) are a set of orthonormal co-triads and triads
compatible with oqab and adapted to V. p is related to

the scale factor a via |p| = V
2/3
o a2. The fundamental

Poisson bracket is given by: {c, p} = 8πGγ/3, where G
is the Newton’s constant and γ the Barbero-Immirzi pa-
rameter. The gravitational part of the Hamiltonian con-
straint reads Hgrav = −6c2

√
|p|/γ2. It is convenient to

introduce new conjugate variables by a canonical trans-
formation:

b :=

√
∆

2

c√
|p|

, ν :=
4

3
√
∆

sgn(p)|p| 32 ,

where ∆ ≡ (4
√
3πγ) ℓ2P is the ’area gap’ from full LQG

(Ashtekar, 2009) and ℓ2P = G~.
In the kinematical Hilbert space Hgrav

kin of the quan-
tum theory, eigenstates of ν̂, which are labelled by real
numbers v, constitute an orthonormal basis as: ⟨v1|v2⟩ =
δv1,v2 . The fundamental operators act on |v⟩ as: ν̂ |v⟩ =
(8πγℓ2P/3)v|v⟩ and êib |v⟩ = |v + 1⟩. In the improved
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LQC treatments, there are different proposed versions
of the gravitational part of the Hamiltonian operators
(Ashtekar et al. 2006b; Yang et al. 2009a,b). The
one which inherits more features from the full LQG con-
tains the Euclidean term ĤE(1) and the Lorentzian term

T̂F (1) (Yang et al. 2009a,b). The action of this gravita-
tional Hamiltonian constraint operator on |v⟩ is given by
(Yang et al. 2009b)

ĤF
grav|v⟩ =ĤE

grav(1)|v⟩ − 2(1 + γ2)T̂F (1)|v⟩
=F ′

+(v)|v + 8⟩+ f ′
+(v)|v + 4⟩

+ [F ′
o(v) + f ′

o(v)] |v⟩
+ f ′

−(v)|v − 4⟩+ F ′
−(v)|v − 8⟩, (1)

where F ′
∗(v) and f ′

∗(v) are certain functions of v. As in
Ashtekar et al. (2006a,b), to identify a dynamical mat-
ter field as an internal clock, we take a massless scalar
field ϕ with Hamiltonian Hϕ = |p|− 3

2 p2ϕ/2, where pϕ de-
notes the momentum of ϕ. While we choose the standard

Schrödinger representation for ϕ, the operator ̂1/|p|3/2
is diagonal in the v representation. Then we can ex-
press the matter part of the quantum Hamiltonian con-

straint as Ĥϕ = 1
2 |̂p|

− 3
2 p̂2ϕ and the total constraint as

ĤF = 1
16πGĤF

grav + Ĥϕ.
To do the canonical semiclassical analysis, we need

to calculate the expectation value of the Hamiltonian
constraint operator with respect to suitable semiclassi-
cal states. A semiclassical state (Ψ(bo,νo)| peaked at a
point (bo, νo) of the gravitational classical phase space
reads:

(Ψ(bo, νo)| =
∑
v∈R

e−
(v−vo)2

2d2 eibo(v−vo)(v|, (2)

where d = 1/ϵ is the characteristic ’width’ of the coherent
state, and vo is related to νo through νo = (8πγℓ2P/3)vo.
For practical calculations, we use the shadow of the semi-
classical state (Ψ(bo,νo)| on the regular lattice with spac-
ing 1 (Ashtekar et al. 2003b). The semiclassical state of
matter part is given by the standard coherent state

(Ψ(ϕo,pϕ)| =
∫

dϕ e−
(ϕ−ϕo)2

2σ2 e
i
~pϕ(ϕ−ϕo)(ϕ|, (3)

where σ is the width of the Gaussian. Thus the whole
semiclassical state reads (Ψ(bo, νo)|

⊗
(Ψ(ϕo,pϕ)|. It turns

out that, by using the above semiclassical state, we can
obtain an effective Hamiltonian with the relevant quan-
tum corrections of order ϵ2, 1/v2ϵ2, ~2/σ2p2ϕ as (Yang et

al. 2009b):

HF
eff = −32

√
6

23
~1/2

γ3/2 κ1/2
L |v|

×
[
sin2(2b)

[
1− (1 + γ2) sin2(2b)

]
+ 2ϵ2

]
+

(
κγ~
6

)3/2 |v|
L
ρ

(
1 +

1

2|v|2ϵ2
+

~2

2σ2p2ϕ

)
, (4)

where κ = 8πG and L = 4
3

√
πγℓ2p
3∆ . It is easy to see that

the classical constraint is reproduced up to small quan-
tum corrections, and therefore the Hamiltonian operator
ĤF has correct classical limit. We can further obtain the
Hamiltonian evolution equation of v by taking its Poisson
bracket with HF

eff as

v̇F =3|v|
√

κ

3
ρc sin(2b) cos(2b)

[
1− 2(1 + γ2) sin2(2b)

]
,

(5)

where ρc = 3/(κγ2∆). The vanishing of the effective
Hamiltonian constraint (4) gives

sin2(2b)
[
1− (1 + γ2) sin2(2b)

]
=

ρ

ρc

(
1 +

1

2|v|2ϵ2
+

~2

2σ2p2ϕ

)
− 2ϵ2. (6)

For the semiclassical regime, b ≪ 1 and ρ ≪ ρc, from
Eq.(6) we have

sin2(2b) =
1−

√
1− χF

2(1 + γ2)
, (7)

where

χF = 4(1 + γ2)

[
ρ

ρc

(
1 +

1

2|v|2ϵ2
+

~2

2σ2p2ϕ

)
− 2ϵ2

]
.

(8)

The modified Friedmann equation can then be derived as

H2
F =

(
v̇F
3v

)2

=
κ

3

ρc
4(1 + γ2)2

(
1−

√
1− χF

)(
1 + 2γ2 +

√
1− χF

)
× (1− χF ) . (9)

It is easy to see that if one neglects the small quantum
corrections in the classical region, χF ≪ 1 for ρ ≪ ρc,
one gets

H2
F ≈ κ

3

ρc
4(1 + γ2)2

1

2
χF 2(1 + γ2) ≈ κ

3
ρ, (10)

which reduces to the standard Friedmann equation.
However, quantum geometry effects lead to a modifica-
tion of the Friedmann equation especially at the scales
when ρ becomes comparable to ρc. Remarkable changes
to the classical theory happen when the Hubble param-
eter in Eq. (9) vanishes by

1− χF = 0. (11)

If we consider only the leading order contribution in Eq.
(8), this can happen when

ρ = ρc/4(1 + γ2). (12)
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FIG. 1: The effective dynamics represented by the observable
v|ϕ are compared to classical trajectories. In this simulation,
the parameters were: G = ~ = 1 , pϕ = 10 000, ϵ = 0.001 , σ =
0.01 with initial data vo = 100 000 .

Thus, when energy density of the scalar field reaches to
the leading order critical energy density ρFc = ρc/4(1 +
γ2), the universe bounces from the contracting branch to
the expanding branch. The quantum bounce implied by
(9) is shown in Fig. 1 .

It is easy to see that Eq.(9) may also reduce to
the leading order effective Friedmann equation H2 =
(8πG/3)ρ(1 − ρ/ρc), if the terms of order 1/(v2ϵ2), ϵ2

and ~2/σ2p2ϕ are neglected. However, as we will see, the

minus sign in front of the ϵ2 term in Eq.(8) may lead to
a qualitatively different scenario from the leading order
effective theory. Thus these subleading terms cannot be
neglected at will, while those neglected higher order cor-
rections cannot lead to qualitatively different effect. For
an expanding universe, it is easy to see from Eq. (9) that
the Hubble parameter may also vanish by the vanishing of
χF , which would lead to a collapse point in our scenario.
The quantum fluctuations or the Gaussian spread ϵ plays
a key role here. Thus its concrete form becomes rather
relevant. One usually sets the innocent condition that
the relative spreads of the basic conjugate variables are
small for semiclassical states, i.e., ∆v

v ∼ 1√
2ϵv

≪ 1 and
∆b
b ∼ ϵ√

2b
≪ 1. A simple setting could be ϵ = λ(r)v−r(ϕ),

where 0 ≤ r(ϕ) ≤ 1 and the parameter λ(r) has to be
suitably chosen for different value of r. We now illus-
trate the extreme case where r = 0. Besides the quantum
bounce when the matter density ρ increases to the Planck
scale, the universe would also undergo a recollapse when
ρ decreases to ρFcoll ≈ 8(1+γ2)ϵ2ρFc . Therefore the quan-
tum fluctuations lead to a cyclic universe in this case as
illustrated in Fig. 2.

Since the significant departure occurs only at the large
scale limit, the asymptotic behavior of r(ϕ) is crucial.

 r=0      classical
v

 104  105  106  107

f

K1

0

1

2

FIG. 2: The cyclic model is compared with expanding and
contracting classical trajectories. In this simulation, the pa-
rameters were: G = ~ = 1 , pϕ = 10 000 , ϵ = 0.001, σ = 0.01
with initial data vo = 100 000.

It is easy to see from Eq.(8) that an expanding uni-
verse would undergo the recollapse and become cyclic
provided 0 ≤ r < 1 asymptotically. Suppose that the
semiclassicality of our coherent state is maintained in the
large scale limit. This implies that the quantum fluctu-
ation 1/ϵ of v cannot increase as v unboundedly as v
approaches infinity. This is another way of saying that

the quantum fluctuation ϵ of b̂ cannot approach zero as
b, since otherwise the coherent state would approach an

eigenstate of b̂ and thus lose its coherence. In fact, the in-
nocent condition ∆b

b ≪ 1 is not valid when b approaches
zero. This fact is obvious if one recalls the standard co-
herent states of a harmonic oscillator, where the fluctu-
ation ∆x is a constant and hence ∆x

x ≪ 1 is not valid
when x approaches zero. Therefore, the assumption that
the semiclassicality of the model is maintained in the
large scale limit indicates a cyclic universe driven by the
quantum fluctuations. This inference is in all probability
as viewed from the parameter space of r(ϕ). This is an
amazing possibility that quantum gravity manifests her-
self in the large scale cosmology, which has never been
realized before.

As in the ordinary quantization procedure, there are
quantization ambiguities in constructing the Hamiltonian
constraint operator for LQC. Hence it is crucial to check
whether the key features of LQC in this model, that the
big bang singularity is replaced by a quantum bounce
and there are great possibilities for an expanding uni-
verse to recollapse, are robust against the quantization
ambiguities. To this aim, an alternative gravitational
Hamiltonian constraint operator ĤS

grav for LQC was also
proposed in Yang et al. (2009b) by a different regulariza-

tion procedure. A similar semiclassical analysis of ĤS
grav
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led to a modified Friedmann equation as

H2
S =

κ

3

ρc
γ4

(−1 +
√
1 + χS )(1 + 2γ2 −

√
1 + χS)(1 + χS),

(13)

where

χS = γ2

[
ρ

ρc

(
1 +

1

2|v|2ϵ2
+

~2

2σ2p2ϕ

)
− 1

2
ϵ2

]
. (14)

The Hubble parameter in Eq. (13) can also vanish when
1+2γ2−

√
1 + χS = 0 or χS = 0. While the former corre-

sponds to the bounce point, the latter corresponds to the
recollapse point. Thus the quantum dynamics given by
ĤS has qualitatively similar feature of that given by ĤF .
Also, the original improved gravitational Hamiltonian
constraint operator proposed in Ashtekar et al. (2006b)

is essentially the Euclidean term ĤE
grav(1) in Eq.(1). Its

semiclassical analysis led to the following modified Fried-
mann equation (Ding et al 2009):

H2 =
8πG

3
ρ
[
1− ρ

ρc
(1 +

1

v2ϵ2
) +

1

2v2ϵ2
− 2ϵ2

ρc
ρ

]
. (15)

It is easy to see that Eq.(15) also gives the quantum
dynamics qualitatively similar to the above two cases.
Therefore, the key features of LQC in this model, that
may drive a cyclic universe, are robust against the quan-
tization ambiguities. Note that, to confirm the above
results of canonical semiclassical analysis, we are devel-
oping a coherent state path-integral approach for LQC
(Qin and Ma, 2011). It turns out that the same effec-
tive Hamiltonian constraint can also be derived by the
coherent state path-integral under certain condition.
We summarize with a few remarks: (i) For the sce-

narios of the cyclic universe, the expectation value, in-
finitesimal Ehrenfest and small fluctuation properties of

the shadow coherent state with respect to b̂ and v̂ are all
maintained at both the quantum bounce and recollapse
points (Ding et al. 2009). Thus the universe could be
semiclassical all the way and present its consistency. (ii)

People used to think that quantum gravity could only
take effect at small (Planck) scale. While the quan-
tum bounce looks quite natural, one may suspect how
quantum effect can change the large scale behavior of
the universe. The intuitive picture that we gained from
this model is the following. As the universe expands un-
boundedly, the matter density would become so tiny that
its effect could be comparable to that of quantum fluctu-
ations of the spacetime geometry. Then the Hamiltonian
constraint may force the universe to contract back. (iii)
Caveats may arise from our effective approach. Our con-
fidence arise from the following facts. First, the Planck
scale quantum bounce predicted by the effective Fried-
mann equation (15) has been confirmed by the numeri-
cal simulation in the full quantum difference-differential
system of this model (Ashtekar et al. 2006b), while the
effective Hamiltonian is more accurate for large volumes
and late times. Secondly, the same effective Hamilto-
nian constraint can also be derived by the coherent state
path-integral approach under certain condition. Never-
theless, the condition that the semiclassicality is main-
tained in the large scale limit has not been confirmed for
any of above quantum dynamics. Hence further numer-
ical and analytic investigations to the properties of dy-
namical semiclassical states in the model are desirable.
It should be noted that in some simplified completely
solvable models of LQC (see Bojowald (2007a,b) and
Ashtekar et al. (2008)), the dynamical coherent states
could be obtained, where r(ϕ) approaches 1 in the large
scale limit. While those treatments lead to the quantum
dynamics different from ours, they raise caveats to the
conjectured recollapse.
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