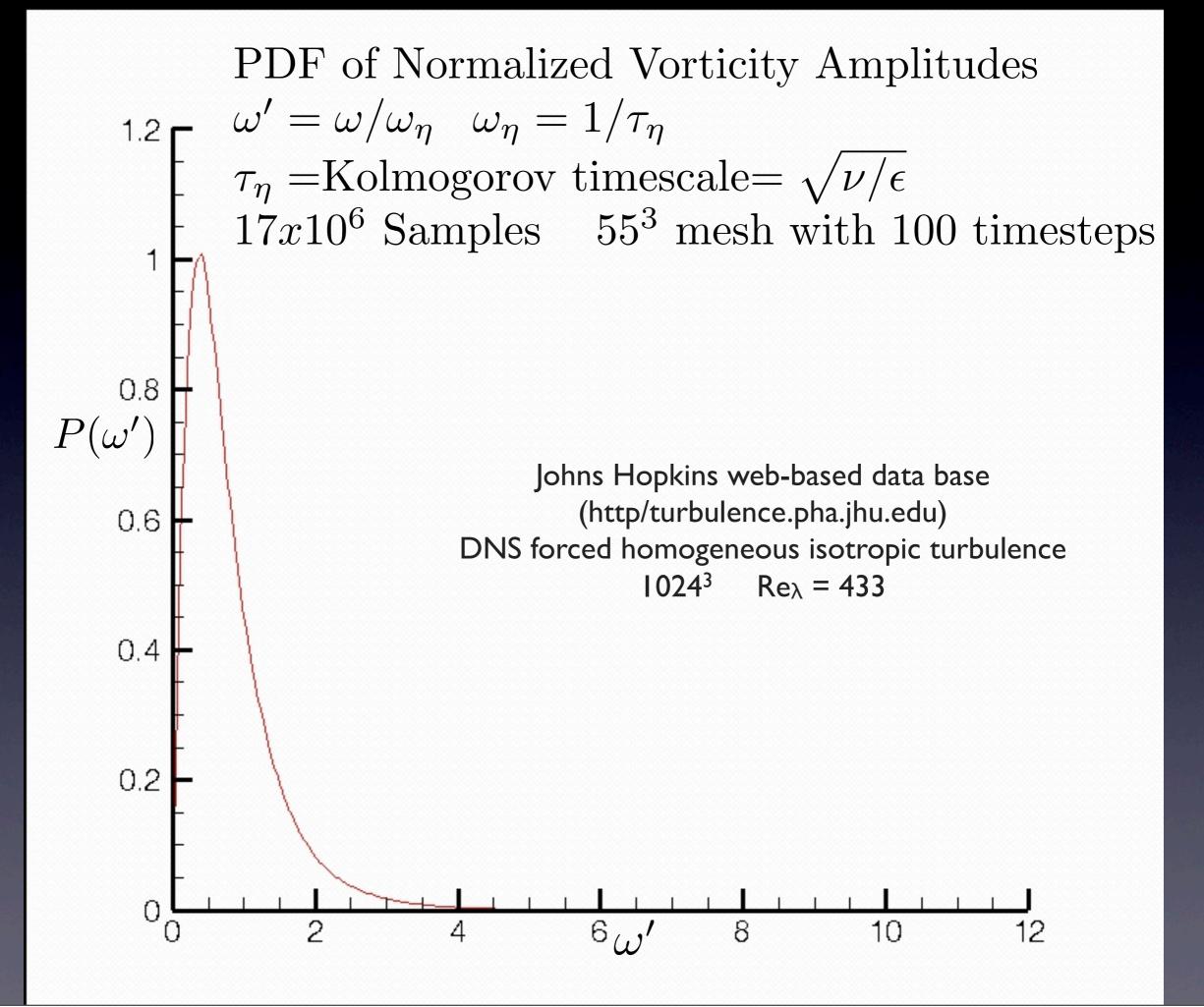
On intense vortex structures in isotropic turbulence

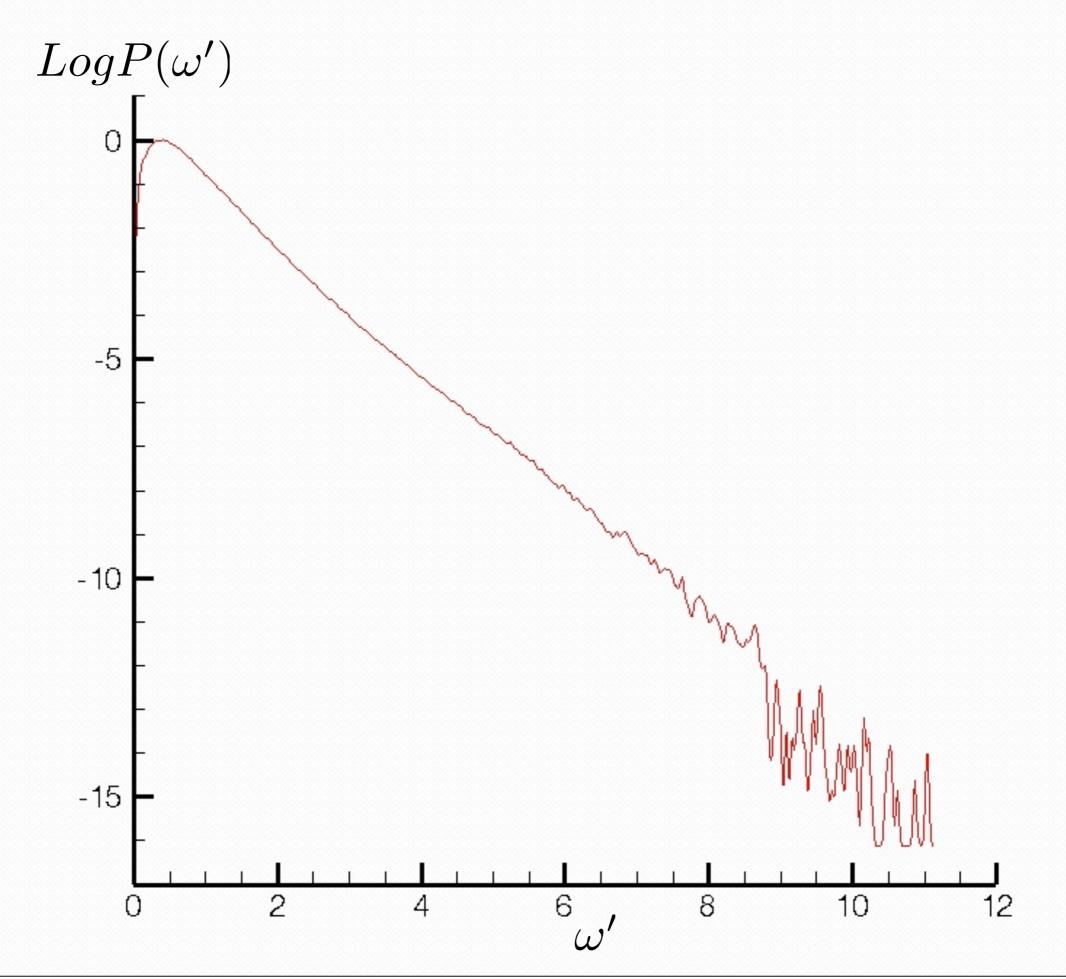
> A. Leonard California Institute of Technology APS DFD 2013

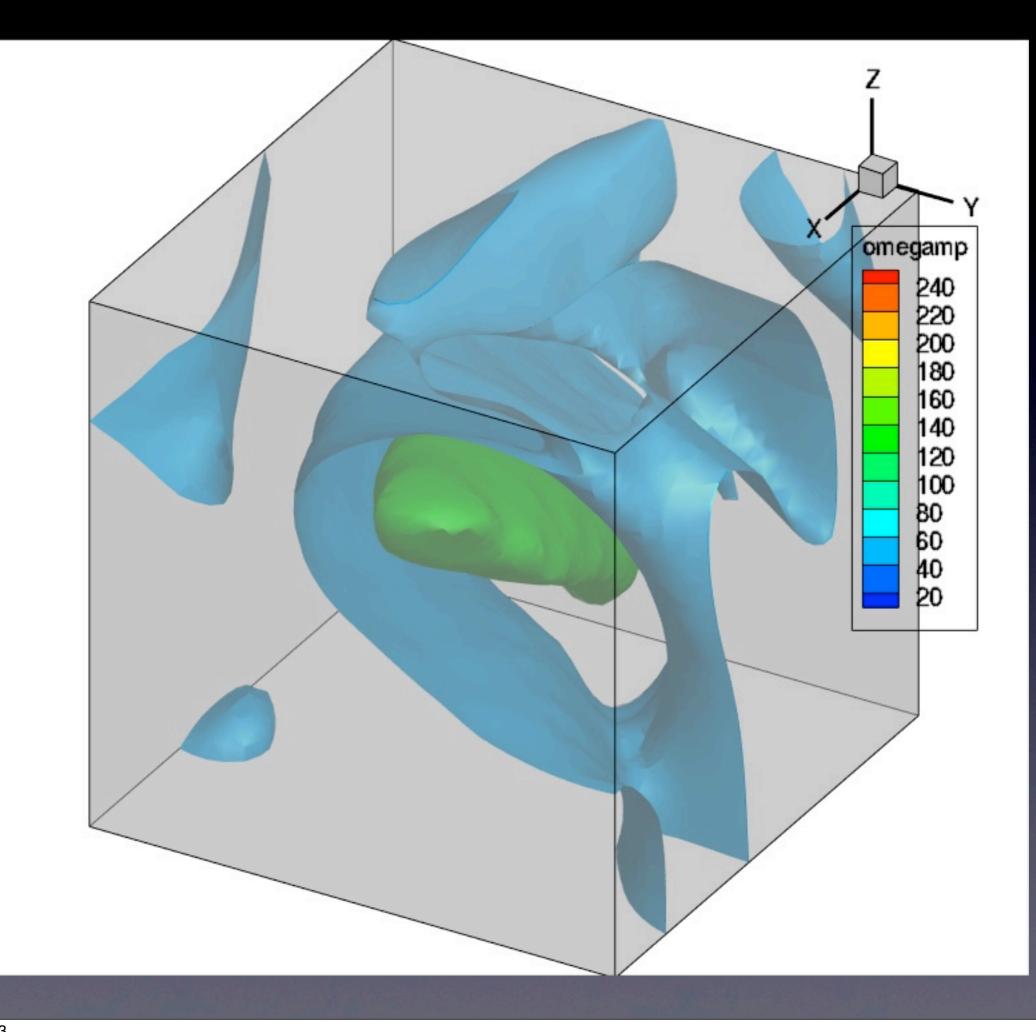
Johns Hopkins web-based data base (http/turbulence.pha.jhu.edu) DNS forced homogeneous isotropic turbulence 1024^3 Re $_{\lambda} = 433$

Intense vortex structures

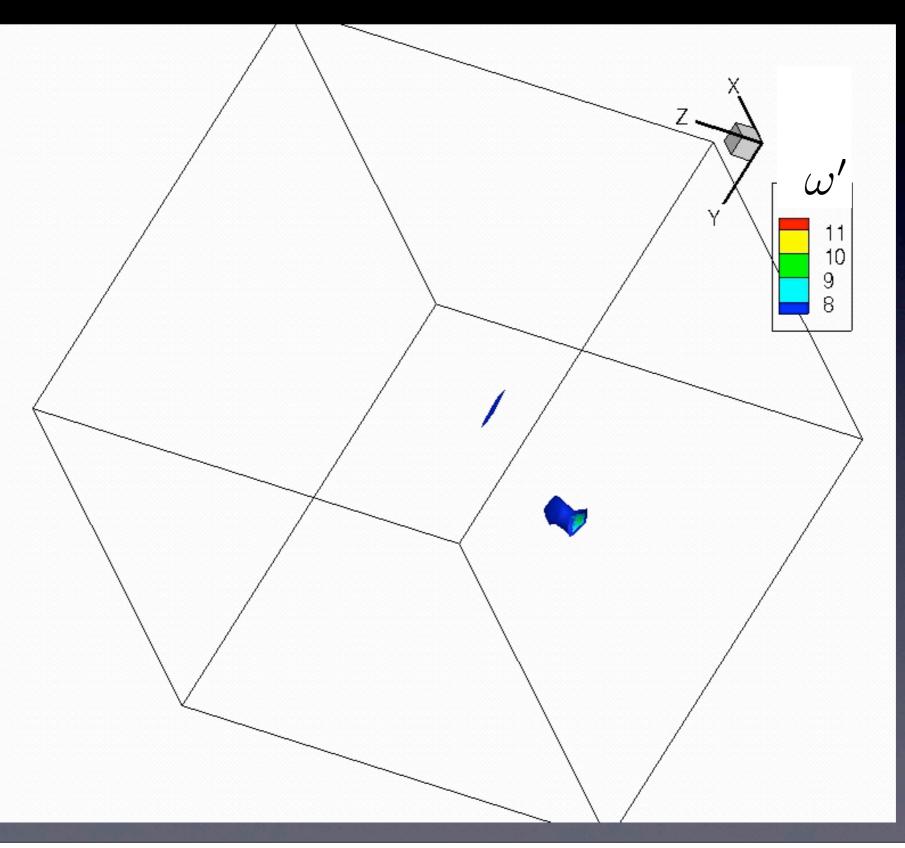
- PDF of vorticity amplitudes asymptotics
- Geometry of intense structures, vorticity distribution
- Evolution in time



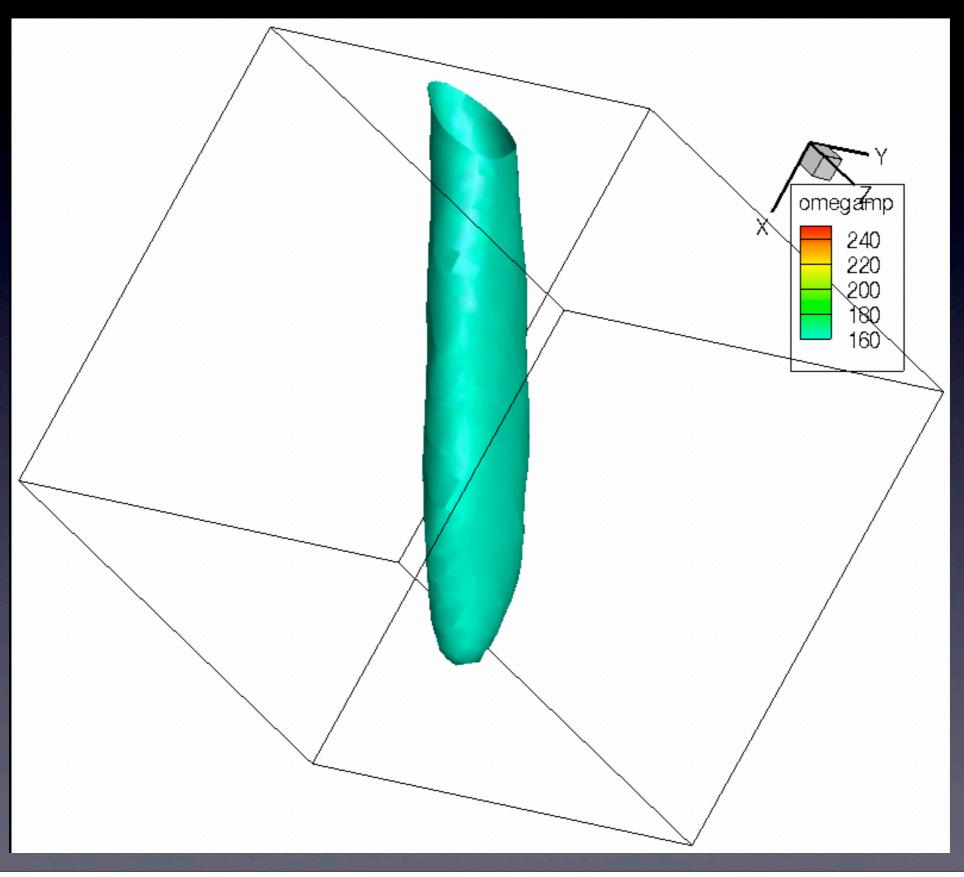




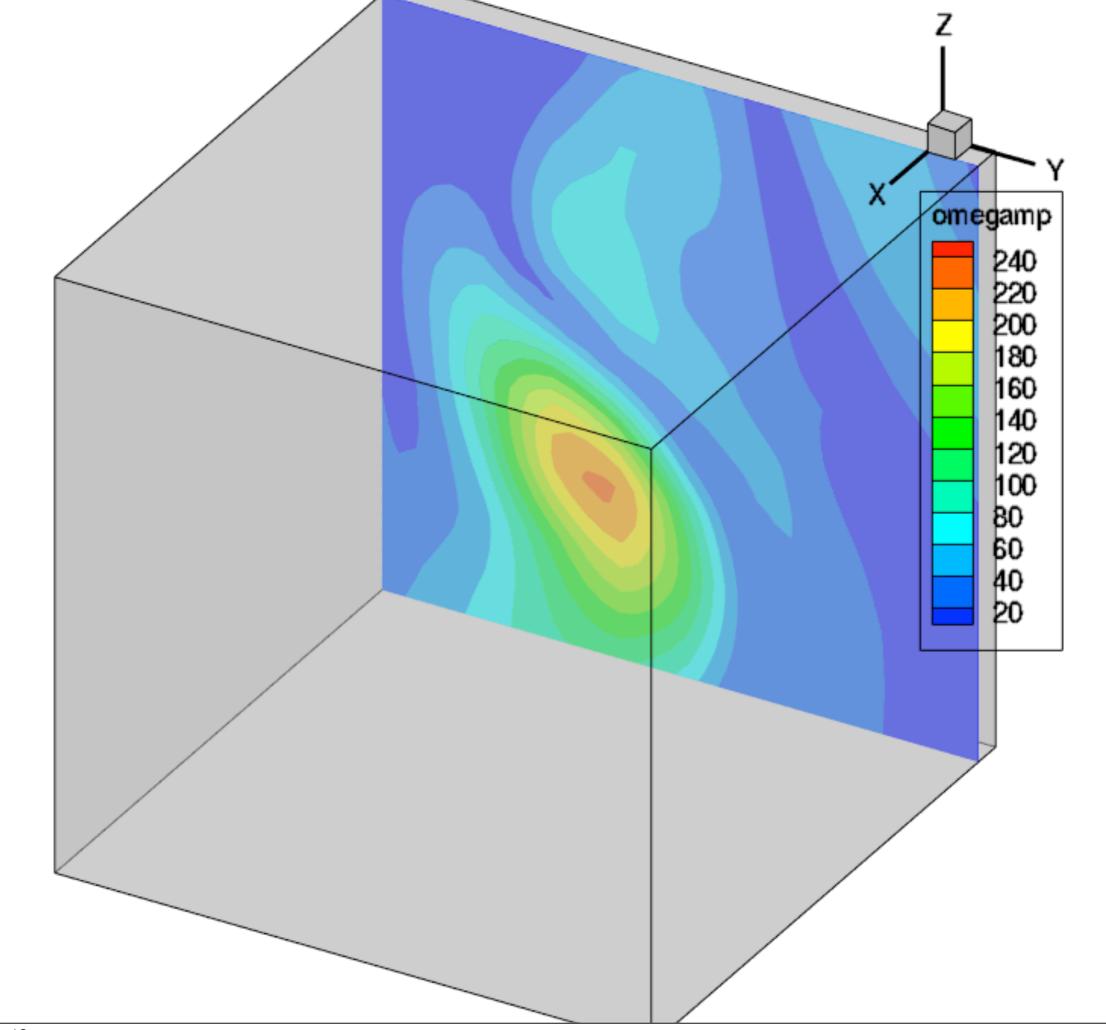
High Amplitude ω' Box size $(32\Delta)^3 = (68\eta)^3 = (1.7\lambda)^3$



Intense ω' Region (zoom in) Box size $(9\Delta)^3 = (19\eta)^3 = (0.47\lambda)^3$



Friday, December 20, 13



PDF for a single structure - $P_S(\omega)$

Model I - Exponential decay of circulation

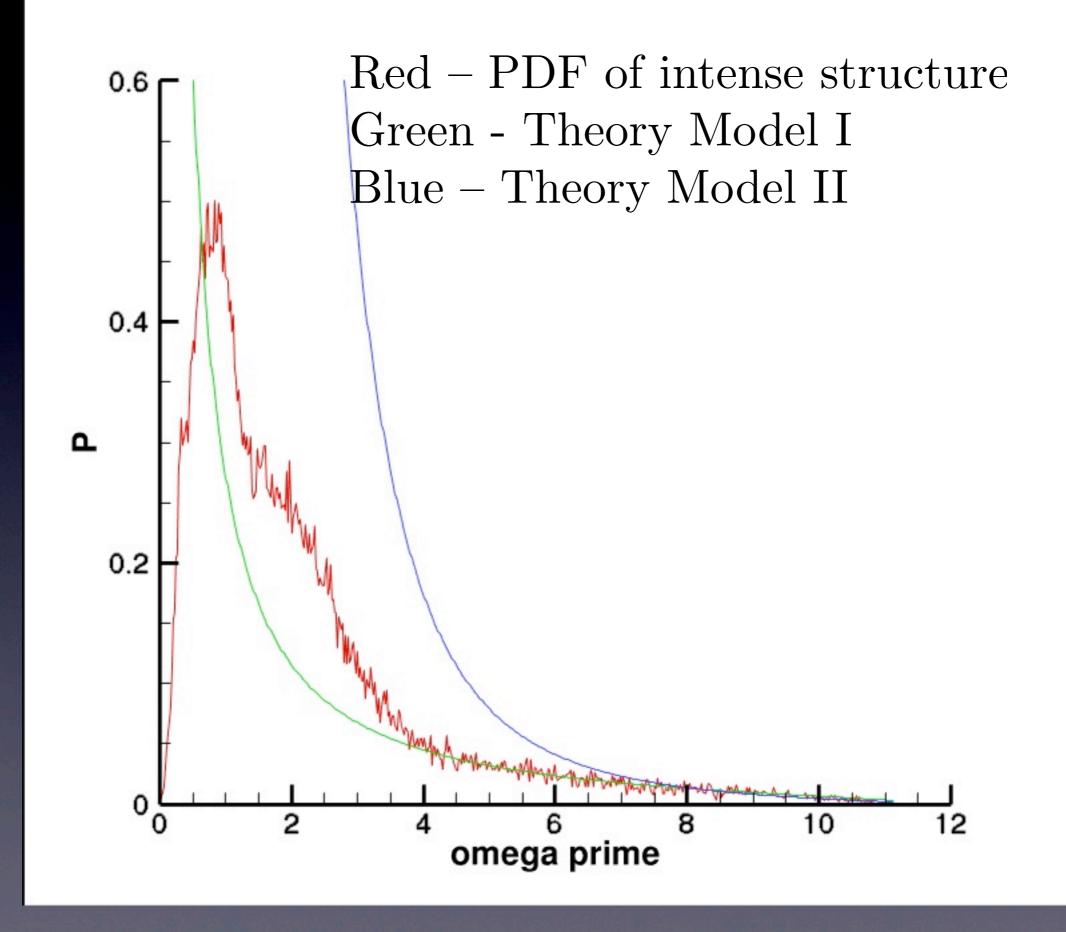
$$\omega_x = \frac{\Gamma}{\pi \sigma_r^2} exp(-r^2/\sigma_r^2) exp(-x^2/\sigma_x^2)$$

et $S = r^2/\sigma_r^2 + x^2/\sigma_x^2 \to S = log(\frac{\omega_{max}}{\omega})$
Volume inclosed by $S \to V(S) = \frac{4}{3}\pi \sigma_r^2 \sigma_x S^{3/2}$
 $P_V(V) = \frac{dV}{V_T} \to \left[P_S(\omega) d\omega = C[log(\frac{\omega_{max}}{\omega})]^{1/2} \frac{d\omega}{\omega} \right]$

Model II - Constant circulation, expanding vortex core $\omega_x = \frac{\Gamma}{\pi \sigma_r^2(x)} exp(-r^2/\sigma_r^2(x))$

with
$$\sigma_r^2(x) = \sigma_o^2(1 + x^2/\sigma_x^2)$$

P



Structure evolution in time (preliminary)

Assume the following form for ω_x

$$\omega_x = \frac{\Gamma(t)}{\pi \sigma_r^2(t)} exp(-r^2/\sigma_r^2(t)) exp(-x^2/\sigma_x^2(t))$$

Consider the vorticity transport equation for ω_x

with leading order straining flow -

$$\mathbf{U} = (a(t)x + b(t)(x^2 - r^2/2) + c(t)(x^3/3 - xr^2/2)\mathbf{e}_x + (-a(t)r/2 - b(t)xr - c(t)(x^2/2 - r^3/8)\mathbf{e}_r)$$

Exact equation for $\Gamma(t)$ (Kelvin's Theorem)

$$\frac{d\Gamma(t)}{dt} = -2\nu/\sigma_x^2(t)$$

Structure evolution in time (continued, preliminary)

Compute $\int dV$, and $\int r^2 dV$ moments of the transport equation with the result

$$\frac{d\sigma_x^2(t)}{dt} = 2a(t)\sigma_x^2(t) + c(t)\sigma_x^4(t) + 4\nu$$
$$\frac{d\sigma_r^2(t)}{dt} = -a(t)\sigma_r^2(t) - \frac{c(t)}{2}\sigma_r^4(t) + 4\nu$$

with ω_r term and local induced velocities argued to be small. The straining flow proportional to b(t) simply shifts the location of the maximum ω_x along the x axis.

Quasi-steady solution for the geometry if c < 0

$$\sigma_x^2(t) \approx -2\frac{a(t)}{c(t)}$$
$$\sigma_r^2(t) \approx 2\frac{\nu}{a}$$

 $\Gamma(t)$ decays exponentially as given above.

Summary

Intense vortex structures

- Geometry of intense structures, vorticity distribution
 Cigar shaped, aspect ratio ≈ 6.5, gaussian distribution of circulation along axis
- Connection between geometry and PDF
 Vorticity distribution yields pdf for a single structure
- Evolution in time
 Equations for gaussian widths in radius and axial direction and for circulation interms of local strainrate field, longtime survival possible