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                                                        ABSTRACT  
        
We show how the new observer-participant paradigm of Measurement Color Quantum Electrodynamics 
(MC-QED) discussed earlier (Leiter, D., Journal of Cosmology, 2009, Vol 3, pp 478-500) can resolve the 
fundamental problem of the asymmetry between microscopic quantum objects and macroscopic classical 
objects inherent in the laws of quantum physics. Since spontaneous CPT violation implies that the photon 
carries the arrow of time in MC-QED, the total Hamiltonian operator in the Schrodinger Picture contains 
quantum potentia and quantum measurement interaction operator components which are time reversal 
violating. The quantum measurement interaction operator component contains causal retarded light travel 
times that are related to the physical sizes and/or spatial separations associated with the physical 
aggregate of Measurement Color symmetric fermionic states into which the fermionic sector of the state 
vector is expanded.  
 
For light travel time intervals in between the preparation and the measurement, the expectation values of 
the time-reversal violating retarded quantum measurement interaction operator will be negligible 
compared to the expectation values of the time reversal violating quantum evolution operator, and the net 
effect generates the  “quantum potentia” of what may occur. On the other hand for light travel time 
intervals corresponding to the preparation and/or the measurement, the expectation values of the time-
reversal violating retarded quantum measurement interaction operator will be dominant compared to the 
expectation values of the time reversal violating quantum evolution operator, and the net effect causes 
the “quantum potentia” to be converted into the “quantum actua” of observer-participant measurement 
events.  
 
For sufficiently large aggregates of atomic “systems” described by the bare state component of the total 
Hamiltonian, which are assumed to exist in an “environment” associated with the quantum measurement 
interaction component of the total Hamiltonian, the net effect of the quantum measurement interaction 
generates time reversal violating decoherence-dissipation effects on the reduced density matrix in a 
manner which can give large aggregates of atomic systems apparently classical properties. In this context 
MC-QED obeys a “dynamic form of Macroscopic Realism” in which the classical level of physics emerges 
dynamically in the context of local intrinsically time reversal violating quantum decoherence-dissipation 
effects. Because of the intrinsic time reversal violating quantum decoherence-dissipation effects generated 
by its time reversal violating photon structure, MC-QED does not require an independent external 
complementary classical level of physics obeying strict Macroscopic Realism in order to obtain a physical 
interpretation. Hence a resolution of the fundamental problem of the asymmetry between microscopic 
quantum objects and macroscopic classical objects inherent in the laws of quantum physics can be found 
in the MC-QED formalism. This offers the possibility of new insights into the emergence of macroscopic 
conscious observers in an observer-participant universe where the photon carries the arrow of time.  
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 I.  INTRODUCTION  
 
The Copenhagen Interpretation of Quantum Mechanics (CI-QM) contains an inherent logical 
asymmetry between object and observer which leads to contradictions. This problem is associated 
with the circular reasoning associated with the two assumptions in CI-QM that: a) “conscious 
observers” are associated with macroscopic measuring systems which have local objective 
properties and,  b) “microscopic quantum systems” have non-local properties which do not have an 
objective existence independent of the irreversible “act of observation” generated by its interaction 
with the macroscopic measuring instruments associated with “conscious observers”. Because of this 
problem the CI-QM leads to contradictory predictions when macroscopically objective systems 
become directly coupled to microscopically non-objective quantum systems in a superposition of 
states. This problem occurs because “conscious observers” and their “macroscopic measuring 
instruments” are made up of large numbers of quantum micro-systems.  This problem cannot be 
avoided since the direct coupling of macro-aggregates of quantum systems to nonlocal micro-
quantum systems must occur in Nature.  
 
In an attempt to better understand the full implications of the quantum measurement process 
described by the CI-QM John Wheeler pioneered the development of the “Observer Participant 
Universe” (OPU). Within the OPU macroscopic conscious observers directly participate in the 
process of irreversibly actualizing the elementary quantum phenomena which make up the universe. 
Wheeler emphasized this point in his well known dictum that  “No elementary quantum phenomenon 
is a phenomenon until it is an irreversibly recorded phenomenon”. However the logical asymmetry 
between the observer and the object associated with the CI-QM remained in Wheeler’s Observer-
Participant Universe, since the dynamical manner in which macroscopic living conscious observers 
irreversibly actualize microscopic elementary quantum phenomena was still unexplained.  
 
In order to solve this problem a new observer-participant paradigm of the quantum measurement 
process is needed which generalizes Wheeler’s concept of the observer-participant universe into a 
microscopic quantum operator form that is symmetric in regard to the definition of the “observer” and 
the “object”. In a recent paper (Leiter, D., Journal of Cosmology, 2009, Vol 3, pages 478-500)  it was 
shown that this new paradigm could be found by incorporating an Abelian operator gauge symmetry 
of microscopic operator observer-participation called “Measurement Color” into the operator 
equations of Quantum Electrodynamics in the Heisenberg picture. This was shown to require that the 
Measurement Color labeling symmetry be imposed onto the quantum field theoretic structure of both 
the electron-positron operators and the electromagnetic field operators in the QED formalism. The 
resultant formalism, called Measurement Color Quantum Electrodynamics (MC-QED), took the form 
of a non-local quantum field theory which described the quantum measurement process in terms of 
myriads of microscopic electron-positron quantum operator fields undergoing mutual microscopic 
observer-participant quantum measurement processes mediated by the charge-field photon quantum 
operator fields through which they interact.  
 
Since the time-symmetric free photon operator could not be given a Measurement Color description within 
the microscopic observer-participant operator symmetry in MC-QED, it was automatically excluded from 
the formalism, Instead the photon operator in MC-QED was given by the nonlocal Measurement Color 
Symmetric “Total Coupled Radiation” charge-field photon operator, which carried a negative time parity 
under the Wigner Time Reversal operator. In this context, applying the same time-symmetric Asymptotic 
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Conditions to the non-local MC-QED operator equations of motion as was done for the local operator 
equations of motion in standard QED, the physical requirement of a stable vacuum state in MC-QED 
dynamically required that the MC-QED Heisenberg operator equations must contain a causal retarded 
quantum electrodynamic arrow of time. 
 
It was shown that this surprising result could be better understood in a broader context by noting that, 
within the nonlocal quantum field theoretic structure of the MC-QED formalism, the physical 
requirement of a stable vacuum state generated a spontaneous symmetry breaking of both the T and 
the CPT symmetry. Spontaneous symmetry breaking of the T and the CPT symmetry occurred in  
MC-QED because the nonlocal photon operator acting within it has a negative parity under Wigner 
time reversal. In this manner the requirement of a stable vacuum state dynamically selected the 
operator solutions to the MC-QED formalism that contain a causal, retarded, quantum 
electrodynamic arrow of time, independent of any external thermodynamic or cosmological 
assumptions (Zeh, D., 2007).  
 
Spontaneous CPT breaking in MC-QED implies that the photon carries the arrow of time. In this 
paper we will show that this fact implies that MC-QED contains both the Von Neumann Type 1 and 
Von Neumann Type 2 of time evolution of the state vector. For this reason we will find that MC-QED 
contains its own microscopic observer-participant description of the quantum measurement process, 
independent of the use of the Copenhagen Interpretation or the Everett “Many Worlds Interpretation”. 
It is for this reason that the paradigm of MC-QED can be used to solve the problem of macroscopic 
quantum reality.  
 
The origin of the problem of macroscopic quantum reality lies in the nature of Copenhagen 
Interpretation of QED. This is because within the QED formalism macroscopic bodies, associated 
with macroscopic measuring instruments and macroscopic conscious observers, are assumed to 
obey a strict form of “Macroscopic Realism” on a complementary classical level of physics external to 
the microscopic quantum electrodynamic system. Macroscopic bodies that satisfy the strict form of 
Macroscopic Realism are assumed have the property that they are at all times in a macroscopically 
distinct state which can be observed without affecting their subsequent behavior.   
 
In this paper we will show that strict Macroscopic Realism is not valid for MC-QED. This is because 
its Measurement Color symmetry implies that the photon operator carries the arrow of time. This fact 
will be shown to have a profound effect on the nature of the time evolution of the state vector in the 
Schrodinger Picture of the MC-QED formalism, since it causes the total Hamiltonian operator acting 
on the state vector in the Schrodinger Picture of MC-QED to become a differential-delay equation 
containing time reversal violating quantum evolution and quantum measurement interaction 
components.  
 
The time reversal violating quantum measurement interaction part of the Hamiltonian operator will be 
shown to contain causal retarded light travel times, which are connected to the values of the physical 
sizes and/or spatial separations associated with the physical aggregate of Measurement Color 
symmetric fermionic states into which the fermionic sector of state vector is expanded. For the 
retarded light travel time intervals in between the preparation and the measurement, the expectation 
values of the time-reversal violating retarded quantum measurement interaction operator will be 
negligible compared to the expectation values of the quantum evolution operator which generates the 
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“quantum potentia” of what may occur.  On the other hand for retarded light travel time intervals 
corresponding to the preparation and/or the measurement, the expectation values of the time-
reversal violating retarded quantum measurement interaction operator will be dominant compared to 
the expectation values of the quantum evolution operator and this will cause the “quantum potentia” 
to be converted into the “quantum actua” of observer-participant measurement events. 
 
In this context we will show that for a sufficiently large aggregate of atomic systems, described by the by 
the bare state component of MC-QED Hamiltonian and assumed to exist in an “environment” associated 
with the time reversal violating quantum measurement interaction component of the total Hamiltonian 
operator,  the effects of the quantum measurement interaction will generate time reversal violating 
decoherence and dissipation effects on the reduced density matrix in a manner which will give these large 
aggregates of atomic systems apparently classical properties. This dynamic form of Macroscopic Realism 
within the MC-QED formalism is in stark contrast to the Copenhagen Interpretation of QED with its strict 
form of Macroscopic Realism.  
 
Since MC-QED obeys a dynamic form of Macroscopic Realism, the classical level of physics emerges 
dynamically in the context of local intrinsically time reversal violating quantum decoherence effects which 
project out individual states since they are generated by the time reversal violating quantum 
measurement interaction in the formalism. Hence MC-QED does not require an independent external 
complementary classical level of physics obeying strict Macroscopic Realism in order to obtain a physical 
interpretation. This is in contrast to the time reversal symmetric case of QED where the local quantum 
decoherence effects only have the appearance of being irreversible because a local observer does not 
have access to the entire wave function and, while interference effects appear to be eliminated, individual 
states have not been projected out.   
 
Hence while MC-QED uses standard canonical quantization methods in the development of its observer-
participant time reversal violating microscopic operator equations of motion in the Heisenberg Picture, it 
does not require an independent external complementary classical level of physics in order to obtain a 
physical interpretation of the quantum measurement process. For this reason the Copenhagen 
Interpretation division of the world does not play a role in the MC-QED formalism. Hence the MC-QED 
formalism represents a more general observer-participant approach to quantum electrodynamics in which 
a consistent description of quantum electrodynamic measurement processes at both the microscopic and 
macroscopic levels can be obtained. Because of this we will find that the paradigm of Measurement Color 
in Quantum Electrodynamics represents a new observer-participant quantum field theoretic language in 
which both microscopic and macroscopic forms of quantum de-coherence and dissipation effects may be  
studied in a relativistically unitary, time reversal violating quantum electrodynamic context. 
 
The structure of this paper is as follows: Section II discusses the structure of the microscopic, time  
reversal violating, observer-participant quantum measurement process in the MC-QED formalism. Section 
III discusses how the time reversal violating quantum measurement process in MC-QED acts to convert 
the “quantum potentia” of potential events into the “quantum actua” of actual events. Section IV discusses 
how the time reversal violating, observer-participant quantum measurement process in MC-QED leads to  
a well-defined dynamic description of the transition from the quantum to the classical level. Finally Section 
V concludes with discussions about the possible extension of the new paradigm of MC-QED into the 
broader realms of physical phenomena associated with emergence of macroscopic conscious observers  
in an observer-participant universe where the photon carries the arrow of time.  
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For the convenience of readers with higher levels of expertise who want more technical information about  
the arguments underlying the general discussions given in Sections II - IV of this paper, more detailed 
analysis in support of these sections is given in Appendices I –VI. 
 
 
II.  THE OBSERVER-PARTICIPANT QUANTUM MEASUREMENT PROCESS  
 
In this section we continue the development of the time reversal violating Measurement Color Quantum 
Electrodynamics (MC-QED) formalism published earlier (Leiter, D., Journal of Cosmology, 2009, Vol 3, 
pages 478-500). For the convenience of those readers who are not familiar with this paper, a brief 
summary of the MC-QED formalism has been given in Appendix I.  
 
Previously we have shown how MC-QED can resolve the apparent asymmetry in the description of the 
microscopic and macroscopic “Arrows of Time” in the universe. In this section we will show how MC-QED 
can resolve the problem of the asymmetry between microscopic quantum objects and macroscopic 
classical objects inherent in the laws of quantum physics.   
 
We begin our discussion by noting that the origin of this problem lies within the nature of Copenhagen 
Interpretation itself. This occurs in the Copenhagen Interpretation of QED because within it macroscopic 
bodies are assumed to obey a strict form of “Macroscopic Realism” on a complementary classical level of 
physics external to the microscopic quantum electrodynamic system. Macroscopic bodies that satisfy this 
strict form of Macroscopic Realism must have the property that they are at all times in a macroscopically 
distinct state which can be observed without affecting their subsequent behavior.   
 
Since the Measurement Color symmetry in MC-QED implies that the photon operator carries the arrow of 
time this has a profound effect on the nature of the time evolution of the state vector in the Schrodinger 
Picture of the MC-QED formalism such that the assumption of Macroscopic Realism is not required in the 
MC-QED formalism. The fact that the photon carries the arrow of time causes the Hamiltonian operator in 
the Schrodinger Picture of MC-QED to contain quantum evolution and quantum measurement interaction 
components which are both time reversal violating. This causes the time reversal violating quantum 
measurement interaction part of the Hamiltonian operator to contain components which have causal 
retarded light travel times, which are connected to the values of the physical sizes and/or spatial 
separations associated with the physical aggregate of Measurement Color symmetric fermionic states 
into which the fermionic sector of state vector is expanded.  
 
For the retarded light travel time intervals in between the preparation and the measurement, the 
expectation values of the time-reversal violating retarded quantum measurement interaction operator will 
be negligible compared to the expectation values of the time reversal violating quantum evolution 
operator and the net effect generates the “quantum potentia” of what may occur. On the other hand for 
the retarded light travel time intervals corresponding to the preparation and/or the measurement, the 
expectation values of the time-reversal violating retarded quantum measurement interaction operator will 
be dominant compared to the expectation values of the time reversal violating quantum evolution 
operator and the net effect causes the “quantum potentia” to be converted into the “quantum actua” of 
observer-participant measurement events. 
 
 



   Journal of Cosmology, Vol 6, 2010,                        Darryl Leiter                                       page 1311 
    

Let us now discuss the above comments in more technical detail. We begin by recalling that in MC-QED 
the reason why the Photon carries the arrow of time is because of the effects of spontaneous CPT 
symmetry breaking inherent within the formalism. In this context the expectation value of the electron-
positron operator equations of motion in the Heisenberg Picture, whose Wigner time reversal violating 
structure is determined by the Asymptotic Condition requirement that a stable vacuum state exists, are  
(k= 1,2, … , N    ( 2   N  )    
 

                       <(-ih + m – e/cA
(k)

(obs))
(k)

> = 0 
where                                                           

                       <A
(k)

(obs) >  = < (j ≠ k = 1… , N)A
(j)

(ret) + A
(k)

(-)>,    
 
The expectation value of the time reversal violating MC-QED operator equations of motion describe  
the Universe as being made up of an infinitely large number  of countable ( 2    N  ) microscopic  
observer-participant quantum measurement interactions, in the context of which:  

    a) charge field photons are causally being emitted and absorbed  between the  
(k)

  and  
(j)

  fermions 
        (k  j = 1,2, … , N) , and  

    b) charge field photons are spontaneously being emitted into the vacuum by each of the 
(k)

 fermions   
         k = 1,2, … , N ),   
 
In the Heisenberg picture the Total Heisenberg State Vector  |H>  obeys  t|H> = 0, and the Total 
Heisenberg Hamiltonian Operator  H = H  obeys dH / dt = 0.  Since they are both conserved in time 

then it follows that both |H> and H = H  are time reversal invariant.  In the Heisenberg picture the  

MC-QED Hamiltonian operator H can be written as  
 

                                H = H = [H0 + Vqp + Vret-qa]       
 

where H0 is the bare fermion and bare  hamiltonian operator given by   
                                      

                                           H0 = Hf + Hph 
Inside of H0 we have that:   
 

Hf  is the bare electron-positron Hamiltonian operator given by 
 

Hf  =   (k) {: dx3 [
(k)

( p  + m - e
(k)

(ext)) 
(k) 

] + J(k)
 A

(k)
Breit

(obs)  :} 
                                        

 

(where (k =1,2, … , N ,    the symbols: :  represent the use of normal ordering,  

A
(k)

Breit
(obs) 

=  (j)  (k) dx3J
(j)

(x’,t) / 4 |x-x’|  represents the Breit  vector potential operator,   

and the external potential 
(k)

(ext)) represents the lowest order Coulombic effects of baryonic nuclei).   
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and Hph is the MC-QED charge-field photon hamiltonian operator given by 
 

Hph =  -1/2 dx3[ (k) {:[(tA (rad)
(k) tA


(rad)

(k)(obs)   +  A (rad)
(k)  A

(rad)
(k)(obs))]:} 

 
where  

                    A 
(k)

(rad)  =  (  - A
(k)

(-)) 

                             =  (j) A
(j)

(-) /(N-1)    
                    A

(k)
(rad)

 (obs) =   (j)  (k) A
(j)

(rad)  =  A
(k)

(-)                   
                            

and   A
(k)

(-)  is the non-local, negative time parity, Heisenberg picture operator  

 
                       A

(k)
(-) =   dx’4 (D(-) (x-x’)  J

(k)(x’)             (k =1,2, … , N ) 
 

In this context the time reversal violating “quantum potentia interaction operator”  Vqp is given by 
 

                      Vqp =   (k) :dx3 J(k) A
(rad)

(k)(obs) :   
where 
 

                    A
(k)

(rad)
 (obs) =   (j)  (k) A

(j)
(rad)  =  A

(k)
(-)                   

 

and the time reversal violating “retarded quantum actua interaction operator”  Vret-qa is given by 

 
Vret-qa  =  :{dx3  (k) [J

 (k) (A(k)
(ret)

 (obs) – A
(k)

Breit
(obs))]  

 
   -1/2 [tA


 (ret)

(k) tA (ret)
(k)

 
(obs) +  tA


 (ret)

(k)tA
(k)

(rad)
(obs)  + tA


 (rad)

(k) tA (ret)
(k)(obs) 

 
                                       

 

 + A
 (ret)

(k)

  A

(k)
 (ret)

(obs) + A
 (ret)

(k)

  A

(k)
 (rad)

(obs)
  + A

 (rad)
(k)


 A (ret)

(k)(obs)]}: 
       
where inside of the expression for the quantum measurement interaction operator  (Vret-qa)   
 

            (A(k)
(ret)

 (obs) – A
(k)

Breit
(obs))  =   (j)  (k)  (A

(j)
(ret – A

(j)
Breit)   

 
Since the above quantum measurement interaction operator  Vret-qa  involves (k  j = 1,2, … , N)  retarded 
electromagnetic operators, then the “quantum actua states” that it selects out of the available “quantum 

potentia states” generated by Vqp,  will be restricted to those which contain (k  j = 1,2, … , N)  measurement 
color labels. 
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The total Hamiltonian H = H = HS  is conserved in time as  
                              

                 idH / dt =  iH / dt  +  [H, H] =  iH / dt   = 0      
 
Hence it follows that the total Hamiltonian operator H is invariant under the action of the Wigner Time 
Reversal operator Tw  in the MC-QED theory as 
 

                                         [H, Tw]  =  [(H0 + Vqp + Vret-qa), Tw]   = 0 
 
which implies that 

                                          [H0, Tt]  =  - [Vqp +Vret-qa, Tt]  
 
However because of the presence of nonlocal charge-field charge field photon operators with negative 

parity under Wigner time reversal Tw , the operator [Vqp + Vret-qa]  violates Wigner time reversal 
Invariance as  
 

                                             [Vqp + Vret-qa, Tw]    0 
 

Hence from the above equations this implies that H0 violates Wigner time reversal as well 
  

                                                [H0, Tt]    0 
 

Now since the MC-QED Heisenberg density matrix operator  H =  |H><H|  obeys H = (H)2 
  

and Tr(H) = 1), then the expectation value the H  operator given by <H|H|H> = Tr(HH) 
evolves in a time reversal invariant unitary manner.  
 

However in this context the expectation value of the operator [Vqp(t) + Vret-qa(t)] given by 
 

           <H [Vqp(t)+ Vret-qa(t)] |H>  = Tr(H[Vqp(t) + Vret-qa(t)])  
 
violates Wigner time reversal, and hence follows that the time evolution of the expectation value  

of the operator H0(t) 
 

                            <H| H0(t)|H>  = Tr(HH0(t))  
 
also violates Wigner time reversal.  
 
However this internal time reversal violating  process still preserves global unitarity, since it dynamically 

preserves the value of the total energy associated with the quantity  <H|H|H> = Tr(HH).  
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III.  CONVERSION OF “QUANTUM POTENTIA” INTO “QUANTUM ACTUA” 
   
Since the above MC-QED time reversal violating property is valid in the Heisenberg Picture, it must also  
be true in both the Schrodinger Picture and the Interaction Picture as well. To see this more explicitly we 

transform the total Heisenberg picture state vector  |H>  into the total Schrodinger picture state vector 

|S(t)> by the unitary time transformation exp [-iH(t-to)]  
 

                                |S(t)>  = exp [H(t-to)/ih] |H>    
 
From which it follows that 

                                            iht|S> = HS |S>    
where  

                             H  =  HS = (H0)S + (Vqp)S + (Vret-qa)S                              

                    (Vqp)S  =   (k) {:(dx3 J(k) A
(rad)

(k)(obs))S
 :}   

and 
 

(Vret-qa)S =   {: dx3  (k) [J
 (k) (A(k)

(ret)
 (obs) – A

(k)
Breit

(obs))]  
 
   -1/2 [tA


 (ret)

(k) tA (ret)
(k)

 
(obs) +  tA


 (ret)

(k)tA
(k)

(rad)
(obs)  + tA


 (rad)

(k) tA (ret)
(k)

 
(obs)

  

                                      
 

+ A
 (ret)

(k)

  A

(k)
 (ret)

(obs) + A
 (ret)

(k)

  A

(k)
 (rad)

(obs)
  + A

 (rad)
(k)


 A (ret)

(k)
 
(obs)]S:}

 

and inside of the expression for the quantum measurement interaction operator  (Vret-qa)S  we have 
 

            (A(k)
(ret)

 (obs) – A
(k)

Breit
(obs))S  =   (j)  (k)  (A

(j)
(ret – A

(j)
Breit)S          

               (A
(k)

(rad)
 (obs))S =  ( (j)  (k) A

(j)
(rad))S =  (A

(k)
(-))S                   

                      (A 
(k)

(rad))S  =   (  - A
(k)

(-))S 
 
Hence in the same manner as occurred in the Heisenberg Picture, it follows in the Schrodinger Picture the 
relativistic, time reversal violating property of  
 

                Tr(S[Vqp(t) + Vret-qa(t)]S) =  <S(t)| [Vqp + Vret-qa]S |S(t)>    
 
dynamically causes the value of  

                                                   Tr(S[H0]S) = <S(t)| [H0]S |S(t)>   
 
to change in a time reversal violating manner which is unitary since it  preserves  the value of the total  

energy associated with   Tr(SHS) = <S(t)| | [H]S |S(t)>.  
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The dynamic source of this time reversal violating property can be seen more explicitly by examining  

the form of the non-local Schrodinger state vector potential operators  (A
(j)

(ret))S , (A
(j)

(adv))S ,  

and (A
(j)

(-))S  given respectively by 
 

                 (A
(j)

(ret))S = (dx’3 exp(-iHR/hc) J
(j)(x’) exp(iHR/hc) / 4R)S 

 

                 (A
(j)

(adv))S = (dx’3 exp(iHR/hc) J
(j)(x’) exp(-iHR/hc) / 4R)S 

and 

                             (A
(j)

(-))S  =   [(A
(j)

(ret))S   - (A
(j)

(adv))S ] / 2 

 

where  R = |x – x’|.   
 
Since linear combinations of these nonlocal time reversal violating Schrodinger operators and their  

derivatives appear inside of the  (Vret-qa)S  operator component of HS in the Schrodinger Picture  
equation of motion for the MC-QED state vector, they influence time evolution of the MC-QED state 
 vector. In this context since 
 

                                     |S(t)> = exp(-i/hHSt)|S(0)>   
 
then it follows that 
 

          exp(+iHR/hc) |S(t)> = exp(HS[t-R/c]/ih)|S(0)> = |S(t – R/c)> 
  
           exp(-iHR/hc) |S(t)> = exp(HS[t+R/c]/ih)|S(0)> = |S(t + R/c)> 
 

Hence we see that the effects of the non-local Schrodinger state vector potential operators  (A
(j)

(ret))S , 

and (A
(j)

(-))S  inside of the Hamiltonian equation of motion for the Schrodinger Picture state vector  

|S(t)>,  convert it into a retarded time-irreversible integro-differential-delay equation for the  

Schrodinger state vector |S(t)>  which contains nonlocal-in-time volume integrals over the state  

vector quantities  |S(t – R/c)>  and  (|S(t – R/c)> - |S(t – R/c)>) / 2. 
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Since the Schrodinger Hamiltonian operator HS in MC-QED contains components which are nonlocal 

 in time, this prevents locally defined eigenstates  |ES> of the total Schrodinger Picture Hamiltonian HS  
operator from being able to be defined at finite time t = to. 
. 

However since the bare state hamiltonian operator H0 is local-in-time then, as shown in Appendices 
III and IV, locally defined bare states  |Eo> = |Efermion>|Ephoton> can be defined for finite times t = to and  

the total MC-QED state vector in the Schrodinger Picture |S(t)> can be expanded into these bare local-

in-time microscopic observer-participant eigenstates|E0> of the local-in-time bare hamiltonian operator 

H0  as  

                    |S(t)> = (Eo)  C(Eo) |Eo>  
 
where| 

                         Ho |Eo> = Eo  |Eo>             
 
 
Then from the Schrodinger state vector equation of motion 
 

                               iht|S(t)> = HS |S(t)> 
 

 we find that the time dependent coefficients  C(Eo)(t), of the observer-participant bare states |Eo>  
 into which |S(t)>  was expanded, obeys a time irreversible, retarded, integro-differential equation.   
 
Hence in the context of the expectation value associated with states |Eo> given by 
 

      Tr(S[H0]S) =  <S(t)| [H0]S |S(t)> = (Eo)  Eo |C(Eo)(t)|
2 

   
 

the time irreversible, retarded, integro-differential equation obeyed by the C(Eo)(t) physically represents 

the fact that there exist characteristic light travel time intervals   E/h < (t-to) < (t – R/c), in between the 

creation of “quantum potentia”  by the action of  Vqp(t)  and their conversion into “quantum actua”  by the 

time irreversible action of Vret-qa(t).  In the context of these characteristic time intervals, the |C(Eo)(t)|
2 

 
can  be interpreted as the relative probabilities, associated with observer-participant quantum-potentia, of 
potential events being converted into actual events associated with observer-participant quantum-actua.  
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We now transform back from the Schrodinger Picture in MC-QED to the Interaction Picture in MC=QED as
 

                              |I(t)>  = exp [i(H0)S(t-to)] |S(t)>  
 
Then we can write            
                         |I(t)>  =   U(t, to) |H>   
 
 where U(t-to)  is the unitary operator given by 
 
 

                   U(t-to) = exp [i(H0)S(t-to)] exp [-iH(t-to)] 
 
 

and  (H0)S  and  H=HS  are constant in time.  (The more technical oriented reader can look at  
Appendix II for a more detailed discussion of the Interaction Picture in the MC-QED formalism) 
 
 
In this context it follows from the Schrodinger Picture state vector equation  
 

                             it|S(t)> = HS |S(t)>     
 

that the Interaction Picture state vector equation which  |I(t)> obeys is given by 
 

           it|I(t)> = [Vqp(t) + Vret-qa(t)]I  |I(t)>    
  
This can be formally integrated as 
                                                                      t 

                 |I(t)> = |I(to)> + (1/ih) dt’[Vqp(t’) + Vret-qa(t’)]I  |I(t’)>    

                                                                         
to                                                

 where 
 
 

  [Vqp(t) + Vret-qa(t)]I   
 
 

                         =   U(t-to) [Vqp(t) + Vret-qa(t)]H U(t-to)
-1  

   
            
                         =   exp [i(H0)S(t-to)] [(Vqp)S + (Vret-qa)S ] exp [-i(H0)S(t-to)] 
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Since the above equations are also nonlocal in time, retarded, integro-differential equations then   

within them there exist characteristic light travel times  E/h < (t-to) < (t – R/c)   in between the creation 

of the “quantum potentia” by the action of the  Vqp(t) and their conversion into “quantum actua” by the  

time irreversible action of   Vret-qa(t).  
 
In this context let us define the quantities  Ri ,  i = 1,2,.. as representing  the various values of the physical 
sizes and/or spatial separations associated with the physical aggregate of Measurement Color symmetric 

fermionic states, which contribute to the local-in-time bare observer-participant quantum states |Eo> into 

which the state vector |I(t)>  is expanded.  
 

Then in the context of the |Eo> states the expectation value of the  relativistic, retarded effects of  

Vret-qa(t)I  will be negligible compared to Vqp(t)I for light travel time intervals  -(Ri /c) < t < (Ri /c) ,  

|(Ri /c)| >>>  |(h / E)|.  These light travel time intervals can be thought  of as occurring “in-between”  

the “preparation of quantum states” by the action of  Vret-qa(t)I  at  t ~ (-Ri /c)  and the “measurement of 

quantum states” at  t ~ (Ri /c), (after which time the Vret-qa(t)I then acts to convert the “quantum potentia”

generated by Vqp(t)I  into the “quantum actua” of observer-participant measurement events).  
 

Hence for light travel time intervals  -(Ri /c) < t < (Ri /c) , |(Ri /c)| >>>  |(h / E)|  , during which the  

operator Vqp(t)I  dominates Vret-qa(t)I,  the state vector in the Interaction Picture can be approximated  

by |I(t)>  |I(t)>qp  where   |I(t)>qp  is the state vector which represents the “quantum potentia”  
state of the system and obeys the equation of motion  
  

           it|I(t)>qp =  [Vqp(t)]I  |I(t)>qp   
 

Then during the light travel time intervals  –(Ri /c)  < t < (Ri /c),  which occur in between preparation and 
measurement,  the above equation can be formally iterated using the Wick “time ordered product operator” 

T  to obtain the S-matrix approximation, associated with the  “quantum potentia” created Vqp-in(t)I  as   
                                                           t < (Ri / c)        

  |I(t)>qp-out = {T(exp[(-i/h) dt’Vqp-in(t’)I}   |I(-Ri /c)>qp-in = S |I(-Ri /c)>qp-in 
                                                                                    

- ( Ri / c)     
 

where for  |(Ri /c)| >>>  |(h / E)|   the S-matrix in MC-QED  is given by 
 
                                                               t < (Ri / c)        

                        S = {T(exp[(-i/h) dt’Vqp-in(t’)I}    

                                                                                       - ( Ri / c)    
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The above expression represents the S-matrix approximation in MC-QED for the time evolution of the 
state vector in the Interaction Picture. (see Appendix V for a further more technical discussion of the 
structure of the S-matrix in the MC-QED formalism) 
 
In the language of von Neumann this would be called PROCESS 2 evolution from which the probability  
of events associated with quantum potentia can be calculated.  
 
We emphasize that the above described S-matrix approximation to MC-QED is valid only for the 

characteristic time intervals  -(Ri /c) < t < (Ri /c) , |(Ri /c)| >>>  |(h / E)| ,  which occur in between 

quantum state preparation and measurement.  In this context the Ri  represent the various values of the 
physical sizes and/or spatial separations associated with the aggregate of Measurement Color symmetric 

fermionic states, which contribute to the local-in-time bare observer-participant quantum states |Eo> into 

which the state vector |I(t)>  is expanded.  
 

On the other hand for the characteristic time intervals   t  > (Ri /c)  the equation for |I(t)>   becomes  
        

          it|I(t)> = [Vqp(t) + Vret-qa(t)]I  |I(t)>          t  > (Ri /c) 
 
 
which can be formally integrated as 
                                                                             t 

      |I(t)>  =     |I(R/c))>qp   + (1/ih) dt’[Vret-qa(t’)]I  |I (t’)>        
                                                                               (Ri / c)     
                                                                                                          

For characteristic time intervals   t  > (Ri /c ,  the above equation formally describes how the  
superposition of “quantum  potentia”  states in the MC-QED S-matrix associated with  
 
                                                                        (Ri / c)                                                              

      |I(R/c))>qp    =  {T(exp[(-i/h) dt’Vqp-in(t’)I )}   |I(-Ri/c)>qp 

                                                            
- (Ri / c)     

  

are converted, by the time reversal violating quantum measurement interaction operator [Vret-qa(t)]I  , 
into the “quantum actua” state of an observer-participant measurement event.   
 
In the language of von Neumann this would be called PROCESS 1 evolution where the probability of 
events associated with the quantum potentia are time irreversibly converted into the quantum actua of  
real events.  
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IV.  DYNAMIC TRANSITION FROM THE QUANTUM TO THE CLASSICAL LEVEL 
 
In this section we will now show that for a sufficiently large aggregate of atomic systems, described by the 
by the bare state component of MC-QED Hamiltonian and assumed to exist in an “environment” associated 
with the retarded quantum measurement interaction component of the Hamiltonian, the net effect of the 
quantum measurement interaction in MC-QED will generate time reversal violating decoherence effects on 
the reduced density matrix in a manner which can give large aggregates of atomic systems apparently 
classical properties.  
 
Hence, in contradistinction the Copenhagen Interpretation of QED with its strict form of “Macroscopic 
Realism”, it follows that MC-QED obeys a dynamic form of Macroscopic Realism in which the classical 
level of physics emerges dynamically in the context of local intrinsically time reversal violating quantum 
decoherence effects which can project out individual states since they are generated by the time reversal 
violating quantum measurement interaction in the formalism.  
 
This is in contrast to the time reversal symmetric case of QED where the local quantum decoherence 
(Schlosshauer, M., 2007) effects only appear to be irreversible. This occurs in the time symmetric 
description of decoherence in QED because a local observer does not have access to the entire wave 
function and, while interference effects appear to be eliminated, individual states have not been projected 
out.    
 
Hence we conclude that the resolution of the problem of the asymmetry between microscopic quantum 
objects and macroscopic classical objects inherent in the laws of quantum physics can be found in the 
MC-QED formalism, because the intrinsically time reversal violating quantum decoherence effects 
inherent within it imply that  MC-QED does not require an independent external complementary classical 
level  of physics obeying strict Macroscopic Realism in order to obtain a physical interpretation.  
 

In the Heisenberg picture the MC-QED Hamiltonian operator H  is 
 

                               H = [H0 + (Vqp + Vret-qa)] = [H0 + (V)] 
              
Now the successive state vector transformations on the Heisenberg Picture State vector |H>, through  

the Schrodinger Picture state vector |S>, that finally leads to the Interaction Picture state vector |I>  
can be formally represented by  |I(t)>  = U(t-to) |H>)  where the unitary operator U(t-to)  is  
given by 
 

                   U(t-to) = exp [i(H0)S(t-to)] exp [-iH(t-to)] 
 

where the Schrodinger Hamiltonian operators (H0)S  and  H=HS  are constant in time. It then follows 
that the equation of motion of the state vector in the Interaction Picture is  
 

                                  it|I(t)> / dt = [V(t)]I  |I(t)>    
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and that the density matrix operator  I(t) = |I(t)><I(t)|   obeys the equation of motion  
 

                        idI(t) /dt = itI(t) = [V(t), I(t)]I    
where      
                [V(t)]I  = exp [i(H0)S(t-to)]  [V] S exp [-i(H0)S(t-to)]]S   
 

which is time-reversal violating because [V]I = [(Vqp + Vret-qa)]I is not invariant under Wigner time 

reversal. However time reversal violating time evolution of I(t) is unitary because conserves the total 

hamiltonian operator   H . Because of this fact that the full density matrix satisfies the two conditions 
required for unitarity to hold, namely  
 

                             Tr|Eo>{I(t)} = <I(t)|I(t)> = 1        (where H|Eo>  =  Eo |Eo>)  
and    

                                                  I(t)
2 =I(t)  

 
In standard QED the local Wigner time reversal invariant properties of the Hermetian Hamiltonian operator 

guarantees a unitary, time reversal invariant evolution of the state vector |I (t)> of the quantum system. 
For this reason, in Copenhagen Interpretation of standard QED,  macroscopic bodies associated with 
measuring instruments and observers are assumed to obey a strict form of “Macroscopic Realism” on a  
complementary classical level of physics external to the microscopic quantum electrodynamic system. 
Macroscopic bodies which satisfy the concept of classical “Macroscopic Realism” are assumed to have the 
property that they are at all times it is in one of their macroscopically distinct states. In addition it is also 
assumed that one can observationally determine that the macroscopic system is in a particular 
macroscopically distinguishable state without affecting its subsequent behavior.  
 
However in contradistinction to standard QED we have that in MC-QED the nonlocal,  time-reversal 
violating, observer-participant structure of MC-QED does not require an independent external 
complementary classical level of physics obeying “Macroscopic Realism” in order to obtain a physical 
interpretation. This is because the Hermetian Hamiltonian operator in MC-QED maintains unitary time 

evolution of the state vector |I (t)> in the context of Wigner Time reversal violating, nonlocal,  
observer-participant interaction operators, associated with the quantum measurement interaction  given by
 

          Tr|Eo>{I(t)[Vin-qp(t) + Vret-qa(t)]I}  =  <I(t)| {Vin-qp(t) + Vret-qa(t)}I |I (t)>  
 

                                                                     =  <I(t)|   dx3  (k)   {J(k) A(k) obs}I |I (t)>  
where 
 

           dx3  (k)   {J(k) A(k) obs}I =   dx3  (k)  (j)  (k) {J(k) [A (k) (-) + A (j)(ret)]}I  
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Hence in MC-QED the action of the relativistic, time reversal violating property of the quantum 

measurement interaction  <I(t)|  [Vin-qp(t) + Vret-qa(t)]I |I (t)>   dynamically causes the value 

of the quantity  <I(t)| [H0(t)]I |I (t)>  to change in a time reversal violating manner while still 

preserving the expectation value of the energy of the total hamiltonian  <I(t)| | [H(t)]I |I (t)> and 

hence the unitarity of the total state vector |I (t)> .   
 
Now inside of  <I(t)| | [H0(t)]I |I (t)>  let the Ri  represent the values of the various physical 
sizes and/or spatial separations associated  with the aggregate of Measurement Color symmetric 

fermionic states, which contribute to the local-in-time bare observer-participant quantum states |Eo> 

into which the state vector |I(t)>  is expanded.  
 
Then the photons associated with the electromagnetic radiation emitted and absorbed within the 
context of these observer-participant states will occur:      
     

a) in a highly efficient manner in the “wave-zone” after a light travel time t ~ Ri /c >> (h / E)]   
        if the characteristic spatial dimension of the observer-participant fermion states within  |Eo>  

        are  Ri >>  ~ hc / E, and 
 

  b)   in a relatively inefficient manner in the “induction-zone” over time intervals (h / E)  < t << Ri /c    

        if the characteristic spatial dimension of the observer-participant system is Ri ~   ~ hc / E,   
 

Hence in <I(t)| | [H0(t)]I |I (t)>  the relativistic, retarded effects of the operator  Vret-qa(t)I  will be 

negligible compared to the effects of the operator Vin-qp(t)   for the light travel time intervals   

(h / E) < t << (Ri /c), which occur in between the creation of the “quantum potentia”  by the action of  

Vin-qp(t) and their conversion into “quantum actua” by the action of Vret-qa(t) after the light travel time 

intervals t   (Ri /c).   
 

In this manner the action  of operator Vret-qa(t) is responsible for the “preparation” of the quantum state 

which occurs at t = to ~ -( Ri /c) as well as the “measurement process” which acts on the quantum state  

at  t = to ~ (Ri /c) and converts the quantum potentia (which exist during  the intermediate time intervals  

(h / E) < t << (Ri /c) within which the operator Vin-qp(t)  dominates the state vector equation of motion). 
 
Hence in MC-QED it follows that macroscopic bodies do not obey a strict form of Macroscopic Realism, 
because in the context of this formalism they are considered to be fully quantum mechanical. However 
within the context of MC-QED it is possible for macroscopic bodies to obey a “Dynamically Conditional 
Form of Macroscopic Realism”  in the following sense: 
 
a)   If the physical dimension of the correlation length of the currents contained within the “object” is larger 
than the physical dimension of the wave-zone associated with its internal radiation fields, the physical 
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effects of the time reversal violating “induced emission” interaction term will dominate the “spontaneous 
emission” interaction term inside of <  (k)   {J(k) A(k) obs}>. Then the resultant time reversal violating 

evolution of <I(t)| | [H0(t)]I |I (t)>  will lead to the generation of a rapid time reversal violating 

quantum de-coherence effect which will ultimately lead to <I(t)| | [H0(t)]I |I (t)> being  in a  
“pointer-basis defined” classical state. 
 
                                           (e.g. if Ls  ~ Ns(ao) >>  ~ (c/) ~ 10-5 cm;    Ns >> 103 atoms) 
 
b)   On the other hand if the physical dimension of the correlation length of the currents contained within 
the “object” is smaller than the physical dimension of the wave-zone associated with its internal radiation 
fields, the physical effects of the time reversal violating “induced emission” interaction term will be 
dominated by the “spontaneous emission” interaction term inside of <  (k)   {J(k) A(k) obs}>. Under these 
conditions the resultant time reversal violating unitary evolution of the density matrix will not lead to the 

generation a rapid quantum de-coherence effect on <I(t)| | [H0(t)]I |I (t)>.   Instead <I(t)| | 
[H0(t)]I |I (t)>   will be in a quantum superposition of states with a lifetime associated with the 
spontaneous decay of its internal states if they are unstable.   
 
                                          (e.g. if Ls  ~ Ns(ao) <<  ~ (c/) ~ 10-5 cm;    Ns << 103 atoms) 
  
These sizes associated with classical–quantum threshold of  10-5 cm and 103 atoms are consistent those 
calculated on page 135, tbl 3.2, of the book by M. Schlosshauer “Decoherence And The Quantum To 
Classical Transition” as follows:    
                                       
                          a(dust) ~ 10-3  cm  >  Ls ~ 10-5 cm  >  a(Large molecule) ~ 10-6   cm) 
 
In this context the process of decoherence in MC-QED will always accompanied by the time reversal 
violating effects of dissipation. This phenomenon what produces such a profound effect on the physical 
nature of the transition from quantum to classical in the MC-QED formalism.  
 
To see this more specifically we note that by virtue of its Measurement Color labeling structure,  

 the total MC-QED Hamiltonian H is 
 

                          H = (H0(sys) + H0(env))I  +  (V)I                               
 

where  H0(sys)I =  (k) (Hf
(k)

)  will be associated  with Measurement Color fermion operators  

(k=1,2,…N 2)   and the environment will be associated with the  charge-field Hamiltonian (Hph)I .  

In this context the bare state Hamiltonian operators H0(sys)I  and  H0(env)I  can be used to define the  
bare states associated with the system and the environment respectively as 
 

                               Hf(sys)I |Ef>  =  Ef |Ef>  
 

                               Hph(env)I |Eph>  =  Eph |Eph>  
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Now choosing to = 0 and noting that  |Eenv> = |Eph> and |Esys> = |Ef>, it follows that the reduced density 
matrix associated with the fermion “system” obtained by tracing over the  “environment” is 
 

I(t)f = Tr|Eph>{I(t)}  
 
                = Tr|Eph>{exp [i(H0)S t] S(t) exp [-iH0 t]} 
 
                 = exp [i(Hf)t]   [Tr|Eph>{exp [i(Hph) t] S(t) exp [-i(Hph)t]}]   exp [-i(Hf)t] 
 
                 = exp [i(Hf)t]   [Tr|Eph>{S(t)}]   exp [-i(Hf)t] 
 
Hence for MC-QED we see that the reduced fermion density matrix  of the system is 
  

                I(t)f  = Tr|Eph>{I(t)} = exp [i(Hf)t]   [Tr|Eph>{S(t)}]   exp [-i(Hf)t]   
 

On the other hand while the reduced density matrix of the fermion system  I(t)f  = Tr|Eph>{I(t)}  obeys 
the time reversal violating time evolution equation given by 
 

                       dI(t)f / dt   =  -i Tr|Eph>{ [V(t), I(t)]I } 
 
the time reversal violating evolution of the reduced density matrix is non-unitary.  
 
This is because now the second of the two conditions for unitarity to hold is violated since now 
 

                                   Tr|Eph>{I(t)f}  = Tr|Eo>{I(t)} =1   
and 

                         I(t)f
 2  (Tr|Eph>{I(t)})

2  I(t)f     Tr|Eph{I(t)
2}.  

 
It is important to note that the above result is formally the same as that shown in section 8.4 and  
Appendix I of the book by M. Schlosshauer “Decoherence And The  Quantum To Classical Transition”, 

except now for the case of MC-QED the operator (V)I  = (Vqp + Vret-qa)I  is both non-local-in-time and 
time reversal violating.   
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V.  CONCLUSIONS 
  
In order to describe the microscopic quantum electrodynamic measurement process in a 
relativistic, observer-participant manner, an Abelian operator symmetry of “microscopic observer-
participation” called Measurement Color (MC) was incorporated into the field theoretic structure of 
the Quantum Electrodynamics (QED).  
 
Within the multi-field-operator theoretic Measurement Color paradigm upon which MC-QED was 
based, a microscopic, causal, electrodynamic arrow of time was found to exist in the universe, 
independent of any additional external thermodynamic or cosmological assumptions.  This 
occurred because the Measurement Color symmetry dynamically prohibited the free photon 
operator from the formalism.  Instead the physical effects of photons were generated by the 
measurement color symmetric, negative time parity Total Coupled Radiation Charge-Field  
Photon operator in the MC-QED formalism.  
 
In contradistinction to the standard local formulation of quantum electrodynamics, this caused the 
phenomenon of spontaneous symmetry breaking with respect to CPT invariance to occur the  
MC-QED formalism. This occurred because MC-QED was a non-local quantum field theory in 
which the photon carried the arrow of time. In this manner the physical requirement of a stable 
vacuum state spontaneously broke the CPT symmetry and led to operator solutions which were 
CP invariant but not T invariant.  
 
In the context of the MC-QED formalism, the empirically observed invariance of CP in quantum 
electrodynamics does not imply T invariance. Hence for the MC-QED formalism the C, P, and 
CP symmetry will be preserved but the CPT symmetry will be spontaneously violated. This 
implies, within the context of MC-QED, that the CPT transformation cannot turn our universe into 
its "mirror image" because the photon carries the arrow of time. Hence MC-QED implies that the 
flow of time in the universe can run forward in a causal sense but cannot not backward in an 
acausal sense.   
 
Since the microscopic observer-participant paradigm of Measurement Color with its dynamically 
generated microscopic dynamic arrow of time is a general concept, its application can be applied 
to quantum gauge field theories which are more general than Quantum Electrodynamics. Hence 
Measurement Color generalizations of higher symmetry quantum gauge particle field theories 
associated with the Standard Model and Grand Unified Models should be attainable, within 
which the gauge bosons as well as the photon would carry the Arrow of Time. 
 
In this manner we see that the dynamic existence of the microscopic arrow of time in MC-QED  
represents a fundamentally quantum electrodynamic explanation for irreversible phenomena  
associated with the Second Law of Thermodynamics, which complements the one supplied by the  
well-known statistical arguments in phase space (Zeh, D., 2007). This occurs because MC-QED 
dynamically generates a causal radiation arrow in the universe which dynamically implies that the  
entropy, associated with spontaneous emission of a cloud of photons from a aggregate of fermions,  
will always increase.  
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Hence the dynamic radiation arrow of time, caused by the spontaneous CPT violation in the MC-QED 
formalism, can be used to derive the Second Law of Thermodynamics, in the fundamental form which 
states that the heat associated with radiation is an irreversible process which spontaneously flows from  
hot bodies to cold bodies and not the other way around. 
 
Since the MC-QED formalism resolved the apparent asymmetry in the description of the 
microscopic and macroscopic “Arrows of Time” in the universe, this allowed us to use it to solve 
the problem of the asymmetry between microscopic quantum objects and macroscopic classical 
objects inherent in the laws of quantum physics.  We began by first noting that the origin this 
problem lies within the nature of Copenhagen Interpretation of QED. This is because within QED 
macroscopic bodies, associated with macroscopic measuring instruments and macroscopic 
conscious observers, are assumed to obey a strict form of “Macroscopic Realism”, on a 
complementary classical level of physics external to the microscopic quantum electrodynamic 
system.  
 
Because its Measurement Color symmetry implied that the photon operator carries the arrow of 
time, this concept of strict Macroscopic Realism was shown to not be valid for the case of   
MC-QED. This was because the photon carrying the arrow of time was shown to have a profound 
effect on the nature of the time evolution of the state vector in the Schrodinger Picture of the  
MC-QED formalism.  
 
In particular we found that this caused the total Hamiltonian operator in the Schrodinger Picture of 
MC-QED to contain a time reversal violating quantum evolution component as well as a time 
reversal violating quantum measurement interaction component. The time reversal violating 
quantum measurement interaction part of the Hamiltonian operator was shown to have 
components which contained causal retarded light travel times, connected to the values of the 
physical sizes and/or spatial separations associated with the physical aggregate of Measurement 
Color symmetric fermionic states into which the fermionic sector of the state vector was expanded.  
 
For retarded light travel time intervals in between the preparation and the measurement, the 
expectation values of the time-reversal violating retarded quantum measurement interaction 
operator was found to be negligible compared to the expectation values of the time reversal 
violating quantum evolution operator, and the net effect generated the “quantum potentia”  
of what may occur in the form of the S-matrix approximation to the formalism.  
 
On the other hand for the retarded light travel time intervals corresponding to the preparation 
and/or the measurement, the expectation values of the time-reversal violating retarded quantum 
measurement interaction operator was found to be dominant compared to the expectation values 
of the time reversal violating quantum evolution operator. and the net effect caused the “quantum 
potentia” of what may occur to be converted into the “quantum actua” of actual observer-
participant measurement events. 
 
In this context it was found that for a sufficiently large aggregate of atomic systems, described  
by the bare state component of total MC-QED Hamiltonian and assumed to exist in an 
“environment” associated with the remaining time reversal violating components of the total 
Hamiltonian, the net effect of the quantum measurement interaction in MC-QED generated time 
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reversal violating decoherence-dissipation effects on the reduced density matrix in a manner 
which could dynamically give large aggregates of atomic systems apparently classical properties.  
 
Hence, in contradistinction the Copenhagen Interpretation of QED with its strict form of 
“Macroscopic Realism”, we found that MC-QED obeyed a dynamic form of Macroscopic Realism 
in which the classical level of physics emerged dynamically in the context of non-local intrinsically 
time reversal violating quantum decoherence effects which were able to project out individual 
states associated with specific diagonal elements of the density matrix. This result was in stark 
contrast to that of QED, where local quantum decoherence effects only appeared to be 
irreversible since a local observer did not have access to the entire wave function and, while 
interference effects appeared to be eliminated, individual states associated with specific diagonal 
elements of the density matrix had not been projected out (Schlosshauer, M., 2007).   
 
In this manner we showed that the intrinsically time reversal violating quantum decoherence 
effects inherent within MC-QED implied that it did not require an independent external 
complementary classical level of physics obeying strict Macroscopic Realism in order to obtain  
a physical interpretation. In this way we have been led to the conclusion that an elegant resolution 
of the problem of the asymmetry between microscopic quantum objects and macroscopic classical 
objects inherent in the laws of quantum physics could be found within the context of the MC-QED 
formalism. 
 
This result has broader implications since it leads to the possibility of finding a physical 
explanation of how living, macroscopic conscious observers emerge from the microscopic laws of 
quantum physics. This is because the observer-participant nature of MC-QED, with its intrinsic 
arrow of time dynamically generated by spontaneous CPT violation, opens up the possibility of 
two possible approaches to explain the apparently spontaneous emergence of macroscopic 
conscious minds in the universe from the microscopic laws of quantum physics. .  
 
The first approach is a local one which can be found by extending the Measurement Color paradigm 
into the recently developed quantum field theoretic domain of consciousness research called Quantum 
Brain Dynamics QBD, (Jibu, M., and Yasue, K., 1995) , (Vitiello, G., 2001 ). Since MC-QED is a quantum 
field theoretic formalism which contains both the effects of quantization and dissipation, it may be possible 
that the ideas underlying QBD can be consistently generalized into a (MC-QBD) formalism. In this way it 
may be possible to find a local cybernetic description of how macroscopic conscious observer-participant 
entities emerge in a microscopic observer-participant universe. 
 
The second approach is a global one which can be found by noting the fact that MC-QED describes the 
universe in terms of myriads of microscopic, time reversal violating, observer-participant quantum field 
theoretic interactions which span both the classical and the quantum world. On the other hand living, 
macroscopic conscious observers also appear to have physical properties which simultaneously span  
both the classical and the quantum world. Because of this similarity the MC-QED formalism has the 
capability of being able to explain how macroscopic conscious observer-participant entities emerge in a 
microscopic observer-participant universe. Since this would occur in a Measurement Color quantum field 
theoretic manner, a global quantum holographic description of consciousness may exist which connects  
the “minds of conscious observers” to the ”mind of the observer-participant universe” as a whole. 
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APPENDIX I.  MEASUREMENT COLOR  QUANTUM ELECTRODYNAMICS  
 
Measurement Color Quantum Electrodynamics (MC-QED) is constructed by imposing an Abelian  
operator gauge symmetry of microscopic operator observer-participation called Measurement Color  
onto the operator equations of Quantum Electrodynamics (QED) in the Heisenberg picture. We do this  
by defining an Abelian quantum field operator labeling symmetry associated with the integer indices  
k = 1,2, …, N (where in the limit we will let N --> ) and then imposing this integer labeling in an 
operational manner onto the quantum field structure of the standard QED formalism. In doing this we  
use the metric signature (1,-1, -1,-1), and (h/2) = c = 1 units and the relativistic notation, operator sign 
conventions, and operator calculation techniques, used to generalize and extend the standard QED 
formalism into the MC-QED theory, are formally similar to those used in Chapters 8 and 9 of  “Introduction 
to Relativistic Quantum  Field Theory” by Sylvan. S. Schweber, Harper & Row 2nd Edition (1962).   
 
The MC-QED formalism which emerges operationally describes the microscopic observer-participant 
quantum electrodynamic process, between the electron-positron quantum operator fields (k)  and the 

charge field photon quantum operator fields  A
(j)

 (k  j) which they interact with, in the Heisenberg 
Picture operator field equations. Since MC-QED is a theory of mutual quantum field theoretic observer-
participation, its action principle must be constructed in a manner such that time-symmetric self-

measurement interaction terms of the form J
(k)

A
(k)

 (k=1,2,… , N -) are dynamically excluded from 
the formalism.  
 
In the Heisenberg picture this is dynamically accomplished by means of the charge-conjugation invariant 
MC-QED action principle given by (k, j =1,2,… , N -) 
 

I  =  {- dx
4  [(k) (1/4[

(k)

o
, (-i+m)

(k)
]  + hermetian conjugate) 

                                                                       + (k) (j  k) (1/2A
(k)

 A
(j) 

+ J
(k)

A
(j)

)]}         
  
In the Heisenberg picture, following  the standard second quantization methods taken in generating QED 
from CED to the above action for MC-QED, we find that the MC-QED Heisenberg operator equations of 
motion are given by     
 

     (-i + m – eA
(k)

(obs))
(k)

 = 0                (Heisenberg equation for 
(k)

 fermion operator)                    

    A
(k)

(obs) =  (j ≠ k) A
(j)

                  (electromagnetic operator field A
(k)

(obs) observed by 
(k)

 )              

    
2
A

(k)
  = J

(k)
   =  -e [

(k)

o
, 

(k)
]         (Heisenberg equation for the A

(k)
  operator)                         

 

where the Measurement Color labels on the operator fields 
(k)

, and A
(k)

 range over (k= 1,2,  , N --> ).  
In the context of an indefinite metric Hilbert space, the Subsidiary Condition 
 

                                  <| (A
(k)

) |>  = 0                     (k =1,2, … , N--> ))  
 
must also be satisfied.  
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Then the expectation value of the Heisenberg Picture operator equations of MC-QED are will be  invariant 
under the Abelian Measurement Color gauge transformation  
 

                                   
(k)’

(x) = 
(k)

(x) exp(ie(x)) 
 

                                   A
(k)’

(x)obs) = A
(k)

(x)(obs) + (x) 
 

where  (x)  is a scalar field obeying  
2
(x) = 0       (k =1,2, … , N -). Hence the individual 

Measurement Color currents J
(k)

 are conserved as J
(k)

 = 0  (k =1,2, … , N -) which implies that  

the individual  Measurement Color charge operators Q
(k)

  =  dx
3
 J0

(k)
  (k =1,2, … , N -) commute  

with the total Hamiltonian operator of the theory. 
 
Following the standard procedures for the canonical quantization of fields applied to MC-CED  leads to  
the canonical equal-time commutation and anti-commutation relations in the  MC-QED formalism as  
 

                             [A
(k)

 (x, t), tA
(j)

(obs) (x’, t)] =  i
 kj

 3
( x’ – x)                                                             

                     {(k)
 (x, t) , 

(j)
(x’, t)} =   kj

 3
( x’ – x)                                     (k, j  =1,2, … , N )        

                     [ A
((k)

 (x, t) , 
(j)

(x’, t)] = [ A
((k)

 (x, t) , 
(j)

(x’, t)] = 0 
 

where sig() = (1, -1, -1, -1, with other equal-time commutators and anti-commutators vanishing 
respectively, (k, j  =1,2, … , N ).                                                                      
 
In this context the structure of the MC-QED operator equations of motion and the equal-time commutation 
and anti-commutation relations dynamically enforces a form of mutual operator observer-participation 
which dynamically excludes time-symmetric Measurement Color self-interaction terms of the form  

eA
(k)


(k)   
(k  =1,2, … , N ) from the operator equations of motion. 

 
The N  2  Maxwell field operator equations must be solved for the charge-field operator solutions 

A
 (k)  within the context of the multi-operator field theoretic Measurement Color paradigm upon which 

MC-CED is based. Hence the MC-QED paradigm excludes the local time-symmetric free radiation 

field operators A
 (0)  from contributing to the A

 (k) charge-field operator solutions, because the A
 (0)  

field operators cannot be defined in terms of Measurement Color charge-field operator currents. This 
is in contrast to the case of QED where the local time-symmetric free radiation field operators  

A
 (0)  cannot be excluded from A  since Measurement Color does not play a role in the Maxwell field 

operator structure in QED. Hence in solving the N  2  Maxwell field operator equations for the 

charge-field operators  A
 (k)  the MC-CED paradigm implies that a universal  time-symmetric 

boundary condition, which mathematically excludes local time reversal invariant free uncoupled 

radiation field operators A
 (0) from contributing to the N  2  charge-fields A

 (k), has been imposed  

on each of the A
 (k) operator solutions to the N  2  Maxwell operator field equations. 
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Hence “free uncoupled radiation field operators” are excluded from MC-QED and in their place the  
physical effects of radiation are operationally described in a microscopic observer-participant manner  

by the “nonlocal, time anti-symmetric, total coupled radiation charge-field operator”  A
(TCRF) 

 

                                 A
(TCRF)

   = (j) A
(j)

(-) =   dx
4’

D(-) (x-x’) (j)J
(j)

(x’)                (k =1,2, … , N--> ))          
 where 

                                          D(-) (x-x’) = (D(ret) (x-x’) - D(adv) (x-x’)) / 2 
 

The A
(TCRF)

  operator is a real,  nonlocal  operator which has a negative parity under Wigner time 

reversal Tw (defined as the product of the Hermetian complex conjugate operator and the operator which 
takes  t into –t) It has the unique  property of being non-locally coupled to the sum of all of the current 

operators while still obeying the charge field photon operator equation  
2
A

(TCRF)
  = 0     

 
Now within the operational observer-participant context of the MC-QED Heisenberg operator field 

equations, the electron-positron operator fields 
(k)

  (k = 1,2, … N) “observe”  the electromagnetic  

operator field A
(k)

(obs) field, where A
(k)

(obs) is  given by the superposition of the “time-symmetric” 

electromagnetic field operators  A
 (j)

(+) = 1/2  dx
4’

(D(ret) (x-x’) + D(adv) (x-x’))J
(k)

(x’)  , (jk =1,2, …N) 

and the “time-anti-symmetric” total coupled radiation field operator A
(TCRF 

as  
         

A
(k)

(obs) =  (k≠j) A
(j)

   =  (j≠k) A
 (j)

(+)   +   (2p-1)A
(TCRF)

      (k = 1,2, … , N--> ))      
                        
where p is a c-number whose value, in the absence of “free radiation field operators”, determines  
nature of the Arrow of Time in the MC-QED formalism independent of any external cosmological or 
thermodynamic assumptions.  
 

To see this more explicitly we re-write the operator equations for A
(k)

(obs) in the following form as 
 

A
(k)

(obs)  =  pA
(k)

(obs)(ret)  + (1-p)A
(k)

(obs)(adv) + A
(k)

(obs)(in-p)                    

                 =  pA
(k)

(obs)(adv) + (1-p)A
(k)

(obs)(ret)  + A
(k)

(obs)(out-p)  
 
where the negative time parity coupled charge field photon “in and out” operators are 
 

                        A
(k)

(obs)(in-p) = (2p – 1) A
(k)

(-)     
                                                  

               A
(k)

(obs)(out-p)  = A
(k)

(obs)(in-p) + 2(2p – 1) A
(k)

(obs)(-)  
                           

                    A
(k)

(-) = 1/2  dx
4’

(D(ret) (x-x’) - D(adv) (x-x’))J
(k)

(x’)                        
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Now, in the absence of non-operational free radiation fields, the presence of the negative time parity  

Total Coupled Radiation Field operator  A
(TCRF)

   in MC-QED implies that the MC-QED operator 

equations violate both the Tp and the Tw symmetry operations defined as follows:   

a) The “Radiation Flow Symmetry Operator”  Tp ,  for  which  p  (1-p) occurs, is violated in the  

        operator equations (3) since they have a negative  parity  under the Tp operation 

b) The Wigner Time Reversal operator symmetry Tw , for which Hermetian complex conjugation and 
        t  -t occurs, is violated in the operator equations since by virtue of the presence of the Total    

       Coupled Radiation Field operator  A
(TCRF) 

they have a negative parity under the Tw operation 
 

However, even though equations separately violate the Tp and the Tw  symmetry, they are still  

invariant under  the generalized Time Reversal operator T = Tw x Tp  which is the product of the Wigner 

Time Reversal Operator  Tw  and the Radiation Flow Symmetry Operator  Tp . Since the operator field 
equations of motion of the MC-QED formalism in the Heisenberg Picture are also invariant under the 
respective action of the Charge Conjugation operator C, and the Parity operator P, then even though it 

violates the Tw  time reversal symmetry, we find that MC-QED is still CPT invariant where the T symmetry 

is generalized to become  T = Tw x Tp. 
 

Now in the context of the Heisenberg Picture state vector |> one defines the “in-out” operator field 

solutions by imposing the  “In-Asymptotic Condition”  as 
(k)

(x, t  -)  =  
(k)

(in)  (k =1, 2, … , N--> )) 
 
(In-kinematic condition) 
 
                   < A

(k)
(obs)(x, t  -)> =  <(dx3 (J

(k)
(obs)(x’, t  -) / 4 |x-x’|)  + A(k)

(obs)(in)>     
 
(in-dynamic stability condition)                                                  

                                                          <tJ
(k)

(x, t  -)>  =  0                                                
 
in the limit as t  -  of the operator equations (1) as  
 

                             <(-i + m – eA
(k)

(obs)(x, t  -))
(k)

(in)>= 0   

                             <
2
A

(k)
(in)> = <J

(k)
(in)>  =  -e <[

(k)
(in)


o
, 

(k)
(in)]>                

 
and also imposing “Out-Asymptotic Condition”  as 

(k)
(x, t  +)  =  

(k)
(out)   (k =1, 2, … , N--> )) 

 
(out-kinematic condition) 

                                   < A
(k)

(obs)(x, t  +)>  = <(dx3 (J(k)
(obs)(x’, t  +) / 4 |x-x’|)  + A

(k)
(obs)(out)>        

(out-dynamic stability condition)                                           

                                   <tJ
(k)

(x, t  +)>  =  0                                                     
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in the limit as t  + of the operator equations (1) as  
 

                        <(-i + m – eA
(k)

(obs)(x, t  +))
(k)

(out)>  = 0  
                                                        

                     <
2
A

(k)
(out)> = <J

(k)
(out)>  =  -e <[

(k)
(out)



o
, 

(k)
(out)]>               

 
Now by applying the Asymptotic Conditions to the MC-QED operator equations of motion it follows that 
a retarded quantum electrodynamic arrow of time emerges dynamically. This is because in the absence  
of  “free uncoupled radiation field operators”: 
 
   a) the kinematic component of the Asymptotic Condition formally determines two possible values for the 
       c-number  p  which controls the arrow of time in the operator equations to be either  p =1 or  p = 0, and
   b) the dynamic component of the Asymptotic Condition associated with the stability of the vacuum state    
      dynamically requires that the physical value of the c-number p which appears in the operator equations 
      to be p=1 associated with a retarded, causal, quantum electrodynamic arrow of time.    
 
To see this more specifically note that for the case of p =1 the Heisenberg Picture operator equations of 
motion have the form 
 

               <(-i + m – eA
(k)

(obs))
(k)

> = 0      
                                          

             <A
(k)

(obs) > = < (j ≠ k)A
(j)

(ret) + A
(k)

(-)>         (k, j = 1,2, … , N--> ))           
 
The expectation value of the above operator equations physically describe the situation where charge field 

photons are causally emitted and absorbed  between the  
(k)

  and  
(j)

  k  j  fermion operators, while 

being spontaneously emitted into the vacuum  by the  
(k

 fermion operators,   (k, j = 1,2, … , N--> )).  For 
this reason these operator equations predict that electron-positron states can form bound states which 
spontaneously decay into charge field photons. Hence these operator equations will satisfy the dynamic 
stability component of the Asymptotic Condition because they predict that their expectation values imply 
that a stable vacuum state exists.   
 
On the other hand for the case of p =0 the Heisenberg Picture operator equations of motion have the form 
 

              <(-i + m – eA
(k)

(obs))
(k)

> = 0    
                                               

             <A
(k)

(obs) > = < (j ≠ k) A
(j)

(adv) - A
(k)

(-)>         (k, j = 1,2, … , N--> ))              
 
On the other hand the expectation value of these operator equations physically describe the situation 

where charge field photons are causally absorbed and emitted  between the  
(k)

  and  
(j)

  k  j  fermion 

operators, while being spontaneously absorbed from the vacuum  by the  
(k

 fermion operators,    
(k, j = 1,2, , N--> )).  For this reason these operator equations predict that electron-positron states will be 
spontaneously excited from the vacuum.  
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Hence these operator equations cannot satisfy the dynamic stability component of the Asymptotic 
Condition because they predict that their expectation values imply that a stable vacuum state cannot exist. 
In addition, because of the operational presence negative time parity Total Coupled Radiation Charge-

Field  A
(TCRF)

 in the MC-QED formalism, the dynamic component of the time-symmetric Asymptotic 
Condition, which requires that a stable vacuum state must exist, dynamically determines a retarded 
quantum electrodynamic Physical Arrow of Time associated with  p =1 independent of any 
Thermodynamic or Cosmological boundary conditions. Hence this implies that  MC-QED has a negative 

parity under the Tw and Tp operations while still remaining Invariant under the CPT symmetry operation 

where T is generalized to become T = Tw x Tp.  
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APPENDIX II . OBSERVER-PARTICIPANT FORMALISM IN THE MC-QED INTERACTION PICTURE  
 

The S-matrix approximation to MC-QED, which holds for time intervals  |(h / E)| < t << |(R/c|, and its 
connection to the well-known Feynman diagrammatic explanations of quantum electrodynamic processes, 
will now be discussed in more detail in the this section where the observer-participant bare state structure 
of MC-QED will be developed. 
   

In the Heisenberg picture the MC-QED Hamiltonian operator H = HS  is 
 

                                       H = H = [H0 + Vqp + Vret-qa] 
 
where H0 contains the bare fermion and bare  components of H         
                                  

                                           H0 = (Hf + Hph) 
 

In H0  the Measurement Color symmetric bare electron-positron Hamiltonian operator Hf  is given  
by  (k =1,2, … , N ) 
 

       Hf  = (k) {: dx3 [(k)
( p  + m - e

(k)
(ext)) 

(k) 
 + J(k)

 A
(k)

Breit
(obs) ] :} 

 
                                                                                                                                     

(where the Breit  potential operator is given by  A
(k)

Breit
(obs) 

=  (j)  (k) dx3J
(j)

(x’,t) / 4 |x-x’| 

and an external potential 
(k)

(ext))  has been included in order to represent the lowest order Coulombic 
effects of baryonic nuclei in the MC-QED)  and the Measurement Color symmetric bare electromagnetic 

field Hamiltonian operator where Hph is given by   (k =1,2, … , N )   
 

 Hph = -1/2 (k) {:dx3 [ (tA
(k)

(rad) tA
(k)

(rad)
(obs)  + A(k)

(rad) 
 
A

(k)
(rad)

(obs))]:} 
                                                                                                                                     
where 

                    A 
(k)

(rad)  =  (  - A
(k)

(-)) 
 

                             =  (j) A
(j)

(-) /(N-1)      
                    
                    A

(k)
(rad)

 (obs) =   (j)  (k) A
(j)

(rad)  =  A
(k)

(-)                   
                            

and   A
(k)

(-)  is the non-local, negative time parity, Heisenberg picture operator defined as 

 
                       A

(k)
(-) =   dx’4 (D(-) (x-x’)  J

(k)(x’)             (k =1,2, … , N ) 
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Note that the A 
(k)

(rad) , A
(k)

(rad)
 (obs) ,   all have a negative parity under Wigner Time reversal  

since they are linear functions of A (-)
(k)

 .   
 

The operators Vqp and Vret-qa   are given (k =1,2, … , N ) by  
 

                      Vqp =   (k) {: dx3 J(k) A
(k)

(-) :}                  
and  
 

(Vret-qa) =   (k) {: dx3 
 [J (k) (A(k)

(ret)
 (obs) – A

(k)
Breit

(obs))]  
 
   -1/2 [tA


 (ret)

(k) tA (ret)
(k)

 
(obs) +  tA


 (ret)

(k)tA
(k)

(rad)
(obs)  + tA


 (rad)

(k) tA (ret)
(k)

 
(obs)] 

 
                                       

 

 + A
 (ret)

(k)

  A

(k)
 (ret)

(obs) + A
 (ret)

(k)

  A

(k)
 (rad)

(obs)
  + A

 (rad)
(k)


 A (ret)

(k)
 
(obs)]:}

 
where 

                                A
(k)

(ret)
 (obs) =   (j)  (k) A

(j)
(ret) 

 

where J(k)  
=  -e[

(k)

o
, 

(k)
 ]  and the symbols  :   :   indicate that normal ordering of operators  

has been taken. In the Heisenberg Picture the MC-QED equal-time commutation and anti-commutation 

relations for (k, j  =1,2, … , N ) are given,  (k, j  =1,2, … , N ),  sig() = (1, -1, -1, -1),  by 
 

         [A
(k)

 (x, t), tA
(j)

(obs) (x’, t)] =  -i 
 kj

 3
( x’ – x)                                                                              

      [ A
((k)

 (x, t) , 
(j)

(x’, t)] = 0 

         [ A
((k)

 (x, t) , 
(j)

(x’, t)] = 0 

      {(k)
 (x, t) , 

(j)
(x’, t)} =   kj

 3
( x’ – x) 

      {(k)
 (x, t) , 

(j)
 (x’, t)} =  0  

      {(k) 
(x, t) , 

(j)
(x’, t)} =  0 

 
        All other equal-time commutators and anti-commutators vanishing respectively.                                     
 

Now the successive state vector transformations on the Heisenberg Picture State vector |H>, through  

the Schrodinger Picture state vector |S>, that finally leads to the Interaction Picture state vector |I>  
can be formally represented by  |I(t)>  = U(t-to) |H>)  where the unitary operator U(t-to)  is  
 

                          U(t-to) = exp [i(H0)S(t-to)] exp [-iH(t-to)] 
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and Schrodinger Hamiltonian operators (H0)S  and  H=HS  are constant in time. It then follows that the 
equation of motion of the state vector in the Interaction Picture is 
 

                               it|I(t)> / dt = [Vqp(t) + Vret-qa(t)]I  |I(t)>    
 

 where Interaction Picture operators OI(x, t)I are related to Heisenberg Picture operators OH(x, t) as 
 

         OI(x,t)I = U(t-to) OI(x,t)H U(t-to)
-1 

= U(t-to) OI(x,t)H U(t-to) 
 
The Interaction Picture the S-matrix approximation to the MC-QED is applicable during the time  

intervals for which Vqp(t)I  dominates Vret-qa(t)I  in the state vector equation of motion. The S-matrix 
approximation is valid during the time intervals   -(R / c)  <  t  <  (R / c)  in between preparations  occurring 
at t =  –(R/c) and measurements occurring at t = (R/c), (where  |(R / c)| >>>> (h / E) is the magnitude of 
the characteristic size and/or spatial separation of the physical components associated with observer-

participant quantum states of the bare hamiltonian operator H0). In this context it follows that the 

Interaction Picture Hamiltonian operator is given by  HI  = (H0)I + (Vqp)I  
 

For simplicity of notation, the subscript  “ I “  will be dropped and understood to hold for all equations in 
what follows. In this context we have 
 

                                     H = H0 + Vqp 
where 

                                           H0  = Hf  + Hph   
 

and the bare fermion Interaction Picture Hamiltonian operator Hin-f  is (k =1,2, … , N 
 

Hf  =  (k) {: dx3 [(k)( p  + m - e(k)
(ext)) (k) + J (k)

 A
(k)

Breit
(obs) ] :}  

and the bare  Interaction Picture Hamiltonian operator Hph  is  (k =1,2, … , N 
 

Hph =   -1/2 (k {:dx3 [ (tA
(k)

(rad) tA
(k)

(rad)
(obs)    

                                                                                 +  A(k)
(rad) 

 

 A

(k)
(rad)

(obs))]:} 
                                                                                                                                     

In  Hph  the operators A 
(k)

(rad  and A
(k)

(rad)
 (obs) 

are given by 
 

                    A 
(k)

(rad)  =  (  - A
(k)

(-))   
                   
                    A

(k)
(rad)

 (obs) =   (j)  (k) A
(j)

(rad)  =  A
(k)

(-)                   
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where     =  (j) A
(j)

(-) /(N-1)     and  A
(k)

(-) is given by 
 

              A
(k)

(-) = (dx’4 D(-))(x-x’) U(t)U(t’)-1 J
(k)(x’) U(t’)U(t)-1) 

where 
 

               U(t)U(t’)-1
 = (exp [i(H0)S t] exp [-iHS t]) (exp [-i(H0)S t’] exp [iHS t’]) 

 

The  “quantum potentia” Interaction Picture operator which couples Hf  to  Hph is given by 
 

   Vqp =  (k) {: dx3 J(k) A
(k)

(-) :}    =   (k) Vqp
(k) 

       (k=1,2,…,N --- > )       
  
The Interaction Picture operator equations of motion for MC-QED are given by 
                                               

     (-i + m - e
(k)

(ext) - eA
(k)

(Breit-obs))(k) = 0  
                                                                                                              (k, j =1,2, … , N -) 
                    

2A
(k)

 (-)= 0                                              
 
where                            

                      A
(k)

(Breit-obs) =  (j ≠ k) A
(j)

(Breit)   
 

                   A
(j)

(Breit) (x,t)  =   dx’3 J(j)
(x’, t) / 4 |x – x’| 

 
and the Coulombic effects of baryonic nuclei in the MC-QED formalism is represented to lowest order  

by the external potential 
(k)

(ext)). The equal-time commutation and anti-commutation relations in the 

Interaction Picture  are  (k, j  =1,2, … , N ),  sig() = (1, -1, -1, -1) , (REF SCHWEBER PG 242) 
 

                        [A
(k)

 (x, t), tA
(j)

(obs) (x’, t)] =  -i 
 kj

 3
( x’ – x)                                                              

                  [ A
((k)

 (x, t) , 
(j)

(x’, t)] = [ A
((k)

 (x, t) , 
(j)

(x’, t)] = 0 

                  { (k)
 (x, t) , 

 (j)
(x’, t)} =   kj

 3
( x’ – x)                                                                                 

                  {(k)
 (x, t) , 

(j)
(x’, t)} =  0                                     

                  {(k)
 (x, t) , 

(j)
(x’, t)} =  0                                     

     
All other equal-time commutators and anti-commutators vanishing respectively, (k, j  =1,2, … , N ).         
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Using the operator equations of motion the above equal time commutation and anti-commutation relations 
can be solved for the general commutation and anti-commutation relations in the Interaction Picture as 

(k, j  =1,2, … , N ) , sig() = (1, -1, -1, -1)      
                                                               

                       [A
(k)

 (x), A
(j)

(obs) (x’)] =  kj
 [iD( x’ – x)]    =   kj

 D( x’ – x)                                

                       [ A
((k)

 (x) , 
(j)

(x’)] = [ A
((k)

 (x) , 
(j)

(x’)] = 0 

                       {(k)
 (x) , 

(j)
(x’)} =   kj

 S( x’ – x)                                      

                       {(k)
 (x) , 

(j)
(x’)} =  0                                     

                       {(k)
 (x) , 

(j)
(x)} =  0  

 

where  D( x’ – x) =  [iD( x’ – x)]   and   D( x’ – x)  = (1/2) (x0)(x)  =  - D(-)( x’ – x),  and all  
other equal-time commutators and anti-commutators vanishing respectively, (k, j  =1,2, … , N ).              
 
When the relationships 
  

                                   A
(k)

(x)   =  ((x)  - A
(k)

(-)(x))  

                                   (x) =  (j) A
(j)

(-)(x) /(N-1)   

                                   A
(k)

(obs)(x) =   (j)  (k) A
(j)

(x) =  A
(k)

(-)(x)                   
 

are inserted, the commutation relations for A
(k)

 (-) (x),  A 
(k)

 (x’), and  (x)  
become (k, j  =1,2, … , N ).                                                                                              
 

                          [A
(k)

 (-) (x),  A
(j)

(-) (x’)] =  (1 -   kj
 ) (D( x’ – x))   

                                   [(x),  A
(k)

(-) (x’)] =  (D( x’ – x))                   

                          [(x),  (x’)] = (N / N-1)(D( x’ – x)) ---> D( x’ – x)) 

                          [(x),  A 
(k)

 (x’)] = (1 / N-1) (D( x’ – x))  ---> 0                                                         

                          [A
((k)

(-)  (x) , 
(j)

(x’)] = 0 

                                   [ A
((k)

(-)  (x) , 
(j)

(x’)] = 0 
 

where D( x’ – x) =  [iD( x’ – x)]   and   D( x’ – x)  = (1/2) (x0)(x)  =  - D(-)( x’ – x),  and all other 
equal-time commutators vanishing (k, j  =1,2, … , N ).                                                                      
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APPENDIX III.  PHOTON BARE STATE STRUCTURE IN THE MC-QED INTERACTION PICTURE  
 
We now consider the quantum state structure associated with the MC-QED charge field photon 
Hamiltonian operator 
 

Hph =  (k {:dx3 [ -1/2 (tA
(k)

(rad) tA
(k)

(rad)
(obs)    

                                                                                         +  A(k)
(rad) 

 

 A

(k)
(rad)

(obs))]:} 
(k=1,2,…,N --- > )   
 
where 

                    A 
(k)

(rad)  =  (  - A
(k)

(-))                       
                           A

(k)
(rad)

 (obs) =   (j)  (k) A
(j)

(rad)  =  A
(k)

(-)                   

and                      =  (j) A
(j)

(-) /(N-1)      
 

are linear functions of the negative time parity  operator A
(k)

(-)(x) which obeys   
2A

(k)
(-)(x) = 0  then 

                             

                         
2A

(k)
(rad)

 (obs)
   =  

2A 
(k)

(rad)   =    
2(x)    = 0 

 

Hence the operators  A 
(k)

(rad),  A
(k)

(rad)
 (obs)

  and      (k =1,2, … , N  )   
can be respectively expanded as 
 

A
(k)

(x)  = ((x)  - A
(k)

(-)(x)) =  d3 / [2(2)3 2)]  { a
(k)

() e
 – i   x    +    a

(k)
()


e
  i    x }  

A
(k)

(rad)
 (obs)

(x) =  A
(k)

(-)(x)  =  d3 / [2(2)3 2)]  { a
(k)

(-)() e
 – i   x    +   a

(k)
(-)()


e

  i    x } 

(x) =   (j) A
(j)

(-) (x) /(N-1) =  d3 / [2(2)3 2)]  { 
 
() e

 – i   x   +   ()


e
  i    x } 

  
where in the above 
 

           a
(k)

(-)()  =  a
(k)

(rad)
 (obs)

() ,      ()   =   (j) a
(j)

(-) () /(N-1)  =   (j) a
(j)

 ()     

                    a
(k)

()  =   (()  -  a
(k)

(-)())   =   ( (j) a
(j)

(-)() /(N-1) -  a
(k)

(-)())        
 
In the context of the above operator equations and their commutation relations, will now show that  

the time reversal violating Measurement Color symmetric operators () and ()


 act respectively  
as destruction and creation operators for Measurement Color symmetric charge field photon states in  
MC-QED which have a negative parity under the Wigner Time Reversal operator Tw .  

We begin by substituting the above representations of   A
(k)

(x)  ,  A
(k)

(obs)(x) , and  (x)   into the 
above MC-QED commutation relations to find (k, j  =1,2, … , N  ) that 
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                   [a
(k)

 (-) (),  a
(j)

(-)


(’)] =  (1 -  kj
) (-0 

3
( - ’)) 

                   [(), a
(j)

(-)


(’)] =  -0 
3
( - ’)        

                   [(),  (’)] =   (-0 
3
( - ’))(N / (N-1)) 

                      [(), a
(k)

(’)
] =  0    

                   [a
(k)

 (-)


 (),  a
(j)

(-)


(’)] = 0     

                   [a
(k)

(-) (),  a
(j)

(-)(’)] = 0        
                                                       

where 0 = (
2
) = () and all other commutators vanish. Next we substitute above representations of   

A
(k)

(x)  and  A
(k)

(obs)(x)  into the charge field photon hamiltonian Hph which gives the charge field 
photon hamiltonian as 
 
 

                Hph   =  (k)  {: [- d3 / 0    (()a()
(k)

()) a
(k)

(-) ()]:}  
 

and normal ordering of operators inside of the symbols {: : } has been taken. Hph is Hermetian since 

 by inserting    a
(k)

()  =  (()  -  a
(k)

(-) ())   and  ()   =   (j) a
(j)

(-) () /(N-1)  into the above 
expression we find that it can also be written as 
 
     

              Hph  =  (k) (j k) {: [- d3 / 0  (()  a() (-)
(k) a()(-)

(j)
()]:}  =  Hph


       

 
 
In this context if the bare MC-QED charge field photon vacuum state |0ph> is defined by  
 

                                              a
(k)

(-) () | 0ph > = 0        (k =1,2, … , N  )    
 

this implies that  Hph | 0ph > = 0  as required. Now since  ()  =   (j) a
(j)

(-) () /(N-1)  the above 
definition of  |0ph> also implies that the bare charge field photon vacuum state also obeys   
 

                                                               ()  | 0ph > = 0  
                 
In this context the bare single charge-field photon in MC-QED can be defined as  
 

                           |1>  = (1)


|0>  = (1 / (N-1)  (j) a
(j)

(-)


(1)
 (j)

 |0>  
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This can be seen by calculating   
                                                           )                   

         Hph |1>    =  -   (k)) d3 / 0    (() a
(k)

()
a(k)

(-)() (1)


|0>  
 

Then using the fact that  [(),  a(j)
(-)


(’)] =  -0 
3
( - ’)  and  (1) =  (J) a

(j)
(1) 

in the above equation we have that 
 

        Hph |1>   =    (J) d3 (()a
 (j)

()


) (-

)3

( - 1) |0>  

                    =     (1)   (J) a
(j)

(1) |0>   

                       =      (1)  ( (1)


 |0>           

                    =     (1) |1>   
as required.                                                 
            
Hence multiple bare charge-field photon states in MC-QED are defined as 
 

                |1, 2,  3,  ….  >  =  1/(Np!) (1)
(2)

(3)


  ….  |0> 
 
In a similar manner as that of the covariant form of QED, consistency with the expectation value of the 
operator form of Maxwell equations in the covariant form of MC-QED requires that an Indefinite Metric 

Hilbert space must be used.  Note that the time parity of the N-photon state  |1, 2,  3,  ….  >  is (-1)
N

 

and that the coherent state defined by exp( ) |0> is not symmetric under time reversal in  
 
In the context of an Indefinite Metric Hilbert space, the subset of physical bare charge field photon states  

in MC-QED contained within the above set of multiple charge field photon eigenstates of Hph  are  
required to obey the Weak Subsidiary Condition 
 

                                                            a
(k)

 () |> = 0     

where   a
(k)

()  =   (()  -  a
(k)

(obs))   =   ( (j) a
(j)

(-) /(N-1) -  a
(k)

(-))        
 
which requires them to contain equal numbers of timelike and longitudinal charge field photons. Since the 
Indefinite Metric Hilbert space implies that charge field photon states with an odd number of time-like 
charge field photons have an additional negative sign associate with their inner product, the combination  
of the Weak Subsidiary Condition and the Indefinite Metric Hilbert space together imply that the physical 
bare charge field photon states have a positive semi-definite norm and energy momentum expectation 
values. Hence from the above analysis we conclude that the Measurement Color symmetric bare charge 
field photon state structure of MC-QED is similar  to that of QED, with the key exception being that the 

Measure Color symmetric bare charge field photon creation and annihilation operators   ()


  and  

()   have a negative parity under Wigner Time reversal Tw. 
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APPENDIX IV.  FERMION BARE STATE STRUCTURE IN THE MC-QED INTERACTION PICTURE  
 
We next discuss the bare state electron-positron structure associated with the fermion Hamiltonian 

operator in the context of the Furry Interaction Picture, (where an external potential 
(k)

(ext))  has been 
included in  order to represent the lowest order Coulombic effects of baryonic nuclei in the MC-QED) 
given by   

            Hf  =  : dx3  (k) [(k)
( p  + m - e(ext)) (k) ] + J(k)

 A
(k)

Breit
(obs)  : 

 
 
where (k  =1,2, … , N )  and 

                                       A
(k)

Breit
(obs) 

=  (j)  (k) dx3J
(j)

(x’,t) / 4 |x-x’| 
 
(k, j  =1,2, … , N )  
 
and the equal time anti-commutation relations in the Furry Interaction Picture are 

                  { (k)
 (x, t) , 

(j)
(x’, t)} =   kj

 3
( x’ – x)                                                                                  

                  { (k)
 (x, t) , 

(j)
(x’, t)} =  0                                     

                  {(k)
 (x, t) , 

 (j)
(x’, t)} =  0                                     

All other equal-time anti-commutators vanishing respectively, (k, j  =1,2, … , N ).                                      
 

Since the bare fermion Hamiltonian operator Hf    is summed over all of its internal Measurement  
Color indices (k =1,2, … , N ) it does not single out any particular Measurement Color label and  
hence it is a Measurement Color scalar. This implies that the multi-electron-positron eigenstates of  

Hf  must be Nf    2  Measurement Color singlet states which are symmetric in their Measurement  
Color labels.  
 
In the Furry Interaction Picture, the MC-QED fermion operator equations of motion, and their charge-
conjugate equations of motion respectively have positive energy operator solutions (denoted by   


(k)

(+)


, 
(k)

(+)      and    
c(k)

(+)


,  
c(k)

(+) ) which, when acting on the vacuum state |0> respectively 
annihilate and create electrons and positrons in a manner formally similar to that of QED. in this context 

the equal-time anti-commutation relations and the Measurement Color symmetry property of  Hf work 
together to generate Measurement Color symmetric electron-positron eigenstates.   
 
Here we will start first by considering case of Nf   2  electrons interacting with each other in the presence 
of an external field since  Nf =1  fermion states are ruled out by the requirement of Measurement Color 
symmetry. In this context it follows that the equal-time anti-commutation relations and the Measurement 

Color symmetry property of  Hf imply that the Measurement Color symmetric multi-electron eigenstates  
for  Nf = Ne   2  bare electrons in the Furry Interaction picture for MC-QED has the form 
 

|E, (N1),(N2),..(Ne)> = (1 / Ne !)  dx1
3.. dxNe

3 (s1. sNe )E( x1,s1… xNe,sNe) (x1,s1)
(1)

(+)
…(xNe,sNe)

(Ne)
(+)
|0>
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Note that in the |E, (N1),(N2) ...(Ne)> state the combination of the anti-commutation properties of the  

in
(k)

(+)


 ,  with the requirement of  measurement color symmetry of the |E, (N1),(N2) ...(Ne)> state 

imposed by  Hf , automatically requires  that the wave function for the Ne electrons given by     

E( x1,s1… xNe,sNe) must be  anti-symmetric in the configuration space and spin coordinates   
(x1,s1… xNe,sNe) consistent with the Pauli Exclusion Principle.  
 

The anti-symmetric Ne-electron wave function E( x1,s1… xNe,sNe) is given by the positive energy 
eigenstate solution to the configuration space Hamiltonian for Ne electrons in an external field  given by 
 

                                      Hcs E ( x1,s1… xNe,sNe) = E E ( x1,s1… xNe,sNe) 
 
where Ne    2 and (k, j  =1,2, … , Ne)        
 

Hcs= (k)  
k

+ (k pk  + km - e
(k)

(ext)) 
k

+    

                                                           + (e
2
 / 4 ) (k)  (j  k)  [

k
+ j

+ (1 - k 
 j ) k

+ j
+ ]  / | x

k  -  xj | 
  
and the k

+  which appear in Hcs are appropriately chosen positive energy projection operators for the kth 
electron interacting with the j   k other electrons in the presence of an external field. For example in the 
simplest case of Ne = 2 electrons, depending on the choice of the external field representing the lowest 
order coulomb coupling of the nucleus, the measurement color symmetric |Ne =2 electron> state could 
describe either the quantum states of either a Helium atom or the quantum states of two spatially 
separated Hydrogen atoms 
 

In a similar manner Measurement Color symmetric  Np    2  positron states involving operator  products of  


c(k)

(+)


  acting on |0>,  and  Measurement Color symmetric (Ne + Np)   2  electron-positron states, 

involving products of both  
(k)

(+)


  and 
c(k)

(+)


 acting together  on |0>, can be constructed in the  
MC-QED formalism. 
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APPENDIX V.   ON THE CALCULATION OF THE S-MATRIX OF QUANTUM POTENTIA IN MC-QED 
 
In the context of the previous discussion of the bare charge field photon and bare electron-positron state 
structure in the MC-QED Interaction Picture, we demonstrated that the predictive properties of the 
Measurement Color symmetric bare charge field photon and bare electron-positron state structure were 
similar to that of QED.  
 
In this appendix we will show how these bare states can be used in calculating the S-matrix in the quantum 
potentia approximation to MC-QED. However in this context we will see that differences in the dynamic 
description of the source of radiative corrections will occur between QED and MC-QED.  This is because, 
instead of being defined by local in time free charge field photon operators as in the case of QED,  the 
observed bare in-field charge field photon operators in MC-QED are described by non-local in time 
operators with a negative parity under Wigner Time Reversal  Tw  given by (k =1,2, … , N ) 
 

              A
(k)

(-) = (dx’4 D(-))(x-x’) U(t)U(t’)-1 J
(k)(x’) U(t’)U(t)-1) 

where 
 

               U(t)U(t’)-1
 = (exp [i(H0)S t] exp [-iHS t]) (exp [iHS t’]exp [-i(H0)S t’]) 

                                       

Now recall that the successive state vector transformations on the Heisenberg Picture State vector |H>, 

through the Schrodinger Picture state vector |S>, that finally lead to the Interaction Picture state vector 

|I> can be formally represented by  |I(t)>  = U(t-to) |H>)  where the unitary operator U(t-to) is 
  

                          U(t-to) = exp [i(H0)S(t-to)] exp [-iHS(t-to)] 
 
where the Schrodinger Hamiltonian operators (H0)S  and  HS = H are constant in time. It then follows 
that the equation of motion of the state vector in the Interaction Picture is 
 

                               it|I(t)> / dt = [Vqp(t) + Vret-qa(t)]I  |I(t)>    
 

and the Interaction Picture operators OI(x, t)I are related to Heisenberg Picture operators OH(x, t) as 
 

         OI(x,t)I = U(t-to) OI(x,t)H U(t-to)
-1 

= U(t-to) OI(x,t)H U(t-to) 
 
Now setting to = 0 for simplicity in what follows we have 
 

                             J
(k)(x)I = U(t) J

(k)(x)H U(t)-1 

 

                           (A
(k)(x)(-))I = U(t)(A

(k)(x)(-))HU(t)-1
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Note that since    
                 

                    (A
(k)(x)(-))I  = dx’4

 D(-))(x-x’) U(t)U(t’)-1 J
(k)(x’)I U(t’)U(t)-1 

 
 

 
 
is a nonlocal in time operator functional of the current operator  then the commutation relations  
                    
                       [ A

((k)
(-)  (x) , 

 (j)
(x’)]I = [ A

((k)
(-)  (x) , 

 (j)
(x’)]I = 0    

 
(required for the existence of the bare local-in-time fermion-charge field photon “in-states”) creates a 
nonlocal in time operator constraint relationship, involving a spacetime integration over the Green  

functions D(-)( x’ – x) and S( x’ – x) whose form is required to be consistent with the anti-commutation 
relations 

                            {in
 (k)

 (x) , in
 (j)

(x’)}I =   kj
 S( x’ – x)                                      

 
Hence in the Wick T-product decomposition of the S-matrix in the Interaction Picture, this leads to  

two different kinds of Wick contraction terms associated with the J
 (k)

 (x) and the A 
 (k)

 (-) (x’) operators:  
 

1) the first kind are local contractions between the J
 (k)

 (x) operators and the A 
 (k)

 (-)(x’)  operators as a 
whole which vanish as 
                                                  ---------                                                     

                                  (J
 (k)

 (x) A 
 (k)

 (-) (x’)) = 0    
 

 2) the second kind are contractions between the J
 (k)

 (x) operators and the nonlocal functional 

dependence of the J
 (jk

 (x) operators which appear inside of the A
((k)

(-) [J
(k)

 (x’)] operators which 
generates two types of non-zero contraction terms  
 
 
                                                ------------ ------- 

                                 J
(k)

 (x) A
((k)

(-) [J
(k)

 (x’)]  0 
                                                 

                                 J
(k)

 (x) A
((k)

(-) [J
(k)

 (x’)]  0  
                                                                         -- 
 
These contractions of the second kind, which are nonlocal since they involved spacetime integrations  

over products of  SF( x’ – x)  and   D(-)( x’ – x) = (D(ret)( x’ – x)  - D(adv)( x’ – x)   ) / 2    are time reversal       
violating and generate time reversal violating radiative corrections to the bare fermion states which occur  
in the MC-QED S-matrix. The details associated with the calculation of the S-matrix in MC-QED will be 
presented elsewhere in future papers. 
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APPENDIX VI.  EFFECTS OF SPONTANEOUS CPT SYMMETRY BREAKING IN MC-QED 
 
From the above discussion we see that the Measurement Color symmetry in MC-QED 
automatically excluded time-symmetric free photon operators from the formalism. Instead the 
photon operator in MC-QED was described by a nonlocal Measurement Color Symmetric 
“Total Coupled Radiation” charge-field photon operator which carried a negative time parity 
under Wigner Time Reversal. In this context the physical requirement of a stable vacuum state 
dynamically required that the Heisenberg operator equations for fermions must contain a 
causal retarded quantum electrodynamic arrow of time, independent of any external 
thermodynamic or cosmological assumptions. Hence this dynamically implied  that the photon 
carries the quantum electrodynamic arrow of time in the MC-QED formalism. 
  
This result is better understood in a broader context by noting that, within the nonlocal 
quantum field theoretic structure of the MC-QED formalism, the physical requirement of a 
stable vacuum state generated a spontaneous symmetry breaking of both the T and the CPT 
symmetry. Spontaneous symmetry breaking of the T and the CPT symmetry occurred in MC-
QED because the nonlocal photon operator acting within it has a negative parity under Wigner 
time reversal. In this manner the requirement of a stable vacuum state dynamically selected the 
operator solutions to the MC-QED formalism that contained a causal, retarded, quantum 
electrodynamic arrow of time, independent of any external thermodynamic or cosmological 
assumptions. In this manner the existence of the causal microscopic arrow of time in MC-QED 
represents a fundamentally quantum electrodynamic explanation for irreversible phenomena 
associated with the Second Law of Thermodynamics which complements the one supplied by 
the well-known statistical arguments in phase space [Zeh, 2007]. 
 
The fact that the Measurement Color symmetry in MC-QED implies that the photon operator 
carries the arrow of time has a profound effect on the nature of the time evolution of the 
combination of “systems + environment” in the Interaction Picture of the formalism (Leiter, 
2010). This is because it causes the reduced density matrix of the “system” in the presence of 
its “environment” to contain both Von Neumann Type 2 (quantum potentia) time evolution of 
the state vector as well as Von Neumann Type 1 (quantum actua) time evolution.  
 
This is because the reduced density matrix of the system takes the form of a differential-delay 
equation containing time reversal violating quantum evolution and quantum measurement 
interaction components. The time reversal violating quantum measurement interaction part of 
the quantum interaction has components that contain causal retarded light travel times, which 
are connected to the values of the physical sizes and/or spatial separations associated with the 
physical aggregate of Measurement Color symmetric fermionic states into which the fermionic 
sector of state vector is expanded. 
 
For the retarded light travel time intervals in between the preparation and the measurement, the 
expectation values of the time-reversal violating retarded quantum measurement interaction 
operator will be negligible compared to the expectation values of the quantum evolution 
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operator which generates the “quantum potentia” of what may occur.  On the other hand for 
retarded light travel time intervals corresponding to the preparation and/or the measurement, 
the expectation values of the time-reversal violating retarded quantum measurement 
interaction operator will be dominant compared to the expectation values of the quantum 
evolution operator and this will cause the “quantum potentia” to be converted into the 
“quantum actua” of observer-participant measurement events.  
 
Hence in this manner MC-QED contains its own time reversal violating microscopic observer-
participant description of the quantum measurement process, independent of the Copenhagen 
Interpretation or the Everett “Many Worlds Interpretation”. It is for this reason that the 
paradigm of MC-QED can be used to solve the problem of macroscopic quantum reality.  
 
This is because Measurement Color Quantum Electrodynamics (MC-QED) has the form of a 
non-local quantum field theory which describes the quantum measurement process in terms of 
myriads of microscopic electron-positron quantum operator fields undergoing spontaneous 
CPT symmetry breaking time observer-participant quantum measurement interaction 
processes mediated by the charge-field photon quantum operator fields through which they 
interact. 
 
In this context it has been shown (Leiter, 2010) for a sufficiently large aggregate of atomic 
systems, described by the bare state components of MC-QED Hamiltonian and interacting 
with each other through the effects of the time reversal violating quantum measurement 
interaction operator,  that the effects of the CPT violating quantum measurement interaction 
will generate time reversal violating (Quantum Decoherence + Dissipation) effects on the 
reduced density matrix in a manner which will give these large aggregates of atomic systems 
apparently classical properties.  
 
Since MC-QED obeys a dynamic form of Macroscopic Realism, the classical level of physics 
emerges in the context of local intrinsically time reversal violating quantum decoherence 
effects which project out individual states since they are generated by the time reversal 
violating quantum measurement interaction in the formalism. Hence MC-QED does not 
require an independent external complementary classical level of physics obeying strict 
Macroscopic Realism in order to obtain a physical interpretation.  
 
Since it does not require an independent external complementary classical level of physics in 
order to obtain a physical interpretation of the quantum measurement process, the MC-QED 
formalism represents a more general observer-participant approach to quantum 
electrodynamics in which a consistent description of quantum electrodynamic measurement 
processes at both the microscopic and macroscopic levels can be obtained.  
 
This is in contrast to the time reversal symmetric case of QED where the local quantum 
decoherence effects only have the appearance of being irreversible because a local observer 
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does not have access to the entire wave function and, while interference effects appear to be 
eliminated, individual states have not been projected out.  
 
The phenomenon of Quantum Decoherence in MC-QED is described in terms of quantum 
systems interacting with their environments, in a time irreversible manner which prevents 
different components in the quantum superposition of the wave function of the (system + 
environment) from interfering with each other. However MC-QED differs from QED in that 
the phenomenon of Quantum Decoherence occurs in the context of a microscopic, time 
irreversible, process generated by spontaneous CPT breaking in the  MC-QED formalism. 
 
Hence the phenomenon of Quantum Decoherence in MC-QED always includes the effects of 
Quantum Dissipation. This is due to the fact that spontaneous CPT symmetry breaking in the 
MC-QED formalism causes the photon to carry the arrow of time. The combination of 
(Quantum Decoherence + Quantum Dissipation), created by the spontaneous CPT symmetry 
breaking inherent in the MC-QED formalism, generates an overall time reversal violating 
process.  
 
This causes the reduced density matrix of the system to become diagonalized by Quantum 
Decoherence effects over a “decoherence time period” after which the effects of Quantum 
Dissipation over a “relaxation time period” >> “decoherence time period” causes specific 
diagonal elements of the of the reduced density matrix to become equal to unity with all others 
equal to zero. In this manner the quantum field theoretic dynamics of the reduced density 
matrix of the system by itself will be both microscopically time irreversible as well as being 
non-unitary.  
 
The combination of microscopically time reversal violating (Quantum Decoherence + 
Quantum Dissipation), generated by the spontaneous CPT symmetry breaking inherent in the 
MC-QED formalism, predicts both the probability of an outcome (i.e. a quantum potentia) as 
well as an actual outcome (i.e. a quantum actua). Because of this fact the well known paradox 
of the “problem of outcomes”, associated with the process of Quantum Decoherence in QED 
[Schlosshauer, 2007], can resolved in the context of the MC-QED formalism 
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