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Abstract

Making use of the Bianchi identity together with the Yilmaz expo-
nential parametrization of General Relativity with the so-called tensor
potentials describing the physical gravitational field, a universal hydro-
dynamical Euler equation is derived for a general relativistic fluid. This
novel relationship remains valid in the presence of gravitational waves,
as it takes into account the full tensorial character of the gravitational
field. As a special case, we recover the general hydrodynamical evolu-
tion formula for the single component newtonian gravitational field of a
relativistic fluid. An important application is the re-analysis of pertur-
bative Jeans’ theory of gravitational instability and the study of sound
waves in the presence of a gravitational field and their interaction with
gravitational waves.
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1 Einstein Real Gravity Theory

Einstein General Relativity (GR) describes the laws of nature as seen from
general reference frames, whether inertial or not. The equivalence principle
assures us that the general motion of particles or material bodies under (loosely
called) gravitational forces are equivalently described by observers in non inertial
reference frames. But these loosely called gravitational forces covered by the
equivalence principle are known not to be restricted to real (pure or actual)
gravity. The equivalence principle in fact unifies the real gravitational force with
other forces known as inertial forces such as the centrifugal and Coriolis forces
of classical mechanics. All of these forces are traditionnally called gravitational
forces by general relativists.

The real gravitational force is very different from the other inertial forces.
Unlike the latters, the real gravitational force vanishes at infinity [1, 2, 3, 4, 5].
Furthermore, unlike the others, it cannot be removed globally by a change of
reference frame. The other inertial forces do disappear when going to an inertial
reference frame (cartesian or natural coordinates [1, 2, 3, 4, 5]). The reason why
the real gravitational force connot be made to disappear is because it curves
spacetime [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The other forces do not, although they
remain unified with the real gravitational force through general relativity and
the equivalence principle.

One realizes that the equivalence principle is too wide a principle, englobing
too many physical forces. The description of real gravity is then cluttered by
these unwanted forces which complicate unnecessarily the dynamics. It thus
seems reasonable to split general relativity into two parts [1, 2, 3, 4, 5, 6, 7, 8],
one covering the flat spacetime inertial forces which should be incorporated into
a generalization of special relativity, and another one dealing exclusively with
curved spacetime phenomena, i .e. the real gravitational force which we call
Einstein Real Gravity (RG).

Such a linear separation of forces can only be accomplished with the aid of the
Yilmaz exponential parametrization of the metric tensor [1, 2, 3, 4, 5, 6, 7, 8, 9],
written in terms of so-called tensor potentials φ ji as follows,

gij = (e2(φÎ−2φ̂)) ki ηkj = ψ ki [Σ̂] ηkj , (1.1)

ψ ki [Σ̂] ≡ (e−4Σ̂) ki , (1.2)

(Σ̂) ji = φ̄ ji ≡ φ ji −
1

2
δ ji φ , (1.3)

in which ηij = (−1, 1, 1, 1) is the flat spacetime metric in cartesian coordinates

(which defines a galilean reference frame [10]) and where (φ̂)ji = φji and (Î)ji = δji
with trace φ ≡ φ ii = −φ̄.

As discussed in previous works [1, 2, 3, 4, 5, 6, 7, 8], the Yilmaz tensor
potentials φji are related linearly to Newton’s gravitational potential, unlike
the traditional metric representation of GR. To lowest order in Newton’s con-
stant, the traditional metric representation is only the first order term of the
exponential parametrization representation and so constitutes only a weak field
description. Note that both representations, to this point, equally agree with
all observational and experimental tests of weak field general relativity [9].

Unlike the traditional weak field metric representation, the strong field ex-
ponential parametrization displays no event horizon. Therefore black holes do
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not exist in this parametrization and no singularity ever develops [1, 2, 3, 4,
5, 6, 7, 8, 9]. The universe is everywhere regular, in complete agreement with
basic observations.

Let us now take into consideration the existence of the two physically inde-
pendent and separate gravitational potentials representing respectively the pure
or real gravitational potentials ϕji and the coordinates or inertial potentials χji
expressed in the following manner [1, 2, 3, 4, 5, 6, 7, 8],

Σ̂ = Φ̂ + Ω̂ ; φ ji = ϕ j
i + χ j

i , (1.4)

leading to the following metric tensor,

gij = ψ ki [Σ̂] ηkj = ψ ki [Φ̂ + Ω̂] ηkj , (1.5)

with the definitions,

(Φ̂) ji = ϕ̄ j
i ≡ ϕ j

i −
1

2
δ ji ϕ , (1.6)

(Ω̂) ji = χ̄ j
i ≡ χ j

i −
1

2
δ ji χ . (1.7)

In the case of diagonal metrics such as the central symmetric isotropic space-
time [7, 8], the gravitational and inertial potentials are diagonal as well and
equation (1.5) for the tensor potentials φ ji cleanly factorizes as follows,

gij = ψ ki [Σ̂] ηkj = ψ ki [Φ̂ + Ω̂] ηkj = ψ ki [Φ̂] ηkj [Ω̂], (1.8)

where we defined,
ηkj [Ω̂] ≡ ψ ik[Ω̂] ηij , (1.9)

which is a coordinate transformation from inertial (cartesian) to non inertial
(spherical, cylindrical, etc.) flat spacetime coordinates.

Separation of the Christoffel symbols

Yilmaz exponential parametrization of the metric (1.1)-(1.7) now leads to the
following general expression for the Christoffel symbols in terms of the tensor
potentials φ̄ ji ,

Γikl[Σ̂] = −4∂(lφ̄
i
k) + 2gim∂mφ̄

j
(lgjk) . (1.10)

Recalling the separation (1.4)-(1.7) in terms of the real gravitational poten-
tials ϕ̄ji and the inertial potentials χ̄ji , we get the following linear separation of
the Christoffel symbols,

Γikl[Σ̂] = ∆i
kl[Φ̂] + Sikl[Ω̂] , (1.11)

in which we defined the Gravitational symbols ∆i
kl and Inertial symbols Sikl as

follows,
∆i

kl[Φ̂] ≡ −4∂(lϕ̄
i
k) + 2gim∂mϕ̄

j
(lgjk) , (1.12)

and,
Sikl[Ω̂] ≡ −4∂(lχ̄

i
k) + 2gim∂mχ̄

j
(lgjk) . (1.13)

For general and inertial (cartesian) coordinates, we have respectively,

Γikl = Sikl + ∆i
kl , (1.14)
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Γ′
i
kl = S′

i
kl + ∆′

i
kl , (1.15)

with the following transformation formula,

Γikl = Γ′
s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
+

∂xi

∂x′s
∂2x′

s

∂xk∂xl
, (1.16)

and so,

Sikl + ∆i
kl = (S′

s
rp + ∆′

s
rp)

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
+

∂xi

∂x′s
∂2x′

s

∂xk∂xl
. (1.17)

Now the Inertial symbols are pure coordinate transformations from inertial
(cartesian) x′

s
to general xk coordinates,

Sikl =
∂xi

∂x′s
∂2x′

s

∂xk∂xl
, (1.18)

which leads directly to S′
s
rp = 0 in inertial (cartesian) coordinates. This is so

because the only transformations between inertial coordinates are linear Lorentz
transformations, which is the statement of vanishing inertial (non-tensor) forces
in inertial coordinate systems.

Now since S′
s
rp = 0, eqs. (1.17)-(1.18) further imply that the Gravitational

symbols ∆i
kl are themselves pure tensors,

∆i
kl = ∆′

s
rp

∂xi

∂x′s
∂x′

r

∂xk
∂x′

p

∂xl
, (1.19)

which means that the real gravitational force is a pure tensor force [1, 2, 3, 4,
5, 6, 7, 8].

2 The Freud and Einstein-Pauli pseudo-tensors

It is well known that the Einstein tensor G k
i can be decomposed [1, 2, 3, 4, 5,

6, 7, 8, 9] in terms of the Freud F k
i and Einstein-Pauli E k

i pseudo-tensors as
follows, √

−gG k
i =

√
−g(F k

i − E k
i ) . (2.1)

The Einstein-Pauli pseudo-tensor is given as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

√
−g E k

j =
√
−g
(
W k
j −

1

2
δ kj W

)
√
−g E ≡

√
−g E k

j δ
j
k = −

√
−gW , (2.2)

where,

√
−gW k

j ≡ − 8gks
(
∂jφ

m
l ∂mφ

l
s −

1

2
∂jφ

m
l ∂sφ

l
m +

1

4
∂jφ∂sφ

)
1

2

√
−gW = − 4grs

(
∂lφ

m
r ∂mφ

l
s −

1

2
∂rφ

m
l ∂sφ

l
m +

1

4
∂rφ∂sφ

)
, (2.3)

and in which we defined the rescaled metric tensor,

gij ≡
√
−ggij ; gij ≡

1√
−g

gij . (2.4)
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The Freud pseudo-tensor on the other hand can be expressed in the following
manner [1, 2, 3, 4, 5, 6, 7, 8, 9],

√
−gF k

j ≡ ∂l(
√
−gB kl

j ) , (2.5)

with the antisymmetric super-potential B kl
j given by [1, 2, 3, 4, 5, 6, 7, 8, 9],

√
−gB kl

j =
√
−gB [kl]

j = −1

2

√
−g
[
δ kj (grsΓlrs − glrΓsrs)

+ δ lj (gkrΓsrs − grsΓkrs)
+ (glrΓkjr − gkrΓljr)

]
, (2.6)

with the property ∂k∂l(
√
−gB kl

j ) = 0. The antisymmetry of the super-potential
in turn leads directly to the so-called Freud identity [1, 2, 3, 4, 5, 6, 7, 8, 9],

∂k(
√
−gF k

j ) = 0 , (2.7)

which is related to energy-momentum conservation in general relativity.
Einstein general relativity is then described as follows [1, 2, 3, 4, 5, 6, 7, 8],

G k
j =

8πk

c4
τ

(E)k
j ; E k

j =
8πk

c4
t̃

(E)k
j ; F k

j =
8πk

c4
(τ

(E)k
j + t̃

(E)k
j ) , (2.8)

with matter energy-momentum tensor τ
(E)k
j and gravitational energy-momentum

pseudo-tensor t̃
(E)k
j .

Finally, the Einstein tensor G k
i satisfies the important Bianchi identity,

DkG
k
j = Dk(F k

j − E k
j ) = 0 , (2.9)

3 The Universal Matter Dynamics Equation

As shown in our previous work [2], the hydrostatic equilibrium equation can be
generalized to the hydrodynamic case with a spacetime-dependent newtonian
gravitational field. Here we generalize the dynamics even further [1] by taking
into account the full tensorial characteristic of the so-called tensor potentials
describing the full gravitational field. Such a generalization turns out to be one
of the easiest formula to derive from general relativity.

Starting from the Bianchi identity (2.9) as well as the rule for the covariant
derivative of symmetric tensors [10], we write immediately,

DkG
k
j =

1√
−g

∂k(
√
−g G k

j )− 1

2
∂jgklG

kl = 0 . (3.1)

We then find,

∂k(
√
−g G k

j ) =
1

2
(gkm∂jgkl)

√
−g G l

m . (3.2)

Recalling the exponential parametrization (1.1)-(1.3) of the metric tensor, we
get,

gkm∂jgkl = −4 ∂j φ̄
m
l . (3.3)
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Insertion into eq. (3.2) yields,

∂k(
√
−g G k

j ) = −2 (∂j φ̄
m
l )
√
−g G l

m

= −2 (∂jφ
m
l )
√
−g R l

m , (3.4)

the second line of which being derived from the definition (1.3) involving the
gravitational tensor potential field φ ml . This is the field which reduces to the
newtonian gravitational field.

Recalling the Einstein field equation (2.8), we finally arrive at the following
forms for the universal matter dynamics equation (UMDE),

∂k(
√
−g τ (E)k

j ) = −2 (∂j φ̄
m
l )
√
−g τ (E)l

m

= −2 (∂jφ
m
l )
√
−g
(
τ (E)l
m − 1

2
δ lmτ

(E)
)
, (3.5)

with the trace of the Einstein energy-momentum tensor defined as τ (E) ≡ τ (E)l
l .

We note as well the following formula which can be obtained from the Freud
identity (2.7) with eq. (2.8) for the Freud pseudo-tensor,

∂k(
√
−g τ (E)k

j ) = −∂k(
√
−g t̃ (E)k

j ) . (3.6)

The UMDE (3.5) is valid in any coordinate system, whether curvilinear or
cartesian and for any matter energy-momentum tensor. However, as discussed
previously [1, 2, 3, 4, 5], the use of curvilinear coordinates necessarily creates ad-
ditional non-tensor forces in the description of the system, the so-called inertial
forces, which clutter the dynamics of the real gravitational field. A clean view of
real gravitational physics is obtained by constraining the theory to a description
in terms of cartesian (natural) coordinates. In such an inertial reference frame,
the inertial potentials and inertial forces vanish. In such a reference frame, the
tensor potentials are given by the real gravitational potentials (φji = ϕji ) and
the Christoffel symbols given by the Gravitational symbols (Γikl = ∆i

kl) which
are true tensors [1, 2, 3, 4, 5, 6, 7, 8]. Einstein general relativity then becomes
an entirely localized (no pseudo-tensors) affine tensor theory. In such a frame,
(3.5) becomes,

∂k(
√
−g τ (E)k

j ) = −2 (∂jϕ̄
m
l )
√
−g τ (E)l

m

= −2 (∂jϕ
m
l )
√
−g
(
τ (E)l
m − 1

2
δ lmτ

(E)
)

= −∂k(
√
−g t (E)k

j ) , (3.7)

with t
(E)k
j the gravitational energy-momentum affine tensor expressed as,

√
−g t(E)k

j =
c4

8πk

[
− 8gks

(
∂jϕ

m
l ∂mϕ

l
s −

1

2
∂jϕ

m
l ∂sϕ

l
m +

1

4
∂jϕ∂sϕ

)
+ 4 δkj g

rs
(
∂lϕ

m
r ∂mϕ

l
s −

1

2
∂rϕ

m
l ∂sϕ

l
m +

1

4
∂rϕ∂sϕ

) ]
.

(3.8)
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The Newtonian Potential

Let us now check that we recover the results of our previous works for a new-
tonian potential [2, 3, 4]. Assuming Newton’s potential Φ to be spacetime
dependent, the physical tensor potential ϕ k

j is now given as follows [2, 3, 4],

ϕ k
j (x0, ~x) = −Φ(x0, ~x)

c2
δ 0
j δ

k
0 , (3.9)

which leads to the following expression for the rescaled metric tensor [2, 3, 4],

g00 = −e−4Φ/c2 ; gαβ = ηαβ ;
√
−g = e−2Φ/c2 . (3.10)

Inserting the newtonian value (3.9) for the tensor potential field into the
second line expression for the UMDE (3.7) we immediately recover the formula,

∂k(
√
−g τ (E)k

j ) =
√
−g (τ

(E)0
0 − τ (E)α

α ) ∂j

(
Φ

c2

)
, (3.11)

which is called the General Hydrodynamical Evolution Equation (HDEE)

of Einstein Real Gravity [2] when the Einstein energy-momentum tensor τ
(E)k
j

describes a general relativistic fluid.
For a perfect fluid in a time-independent gravitational field (∂0Φ = 0), we

recover the usual Hydrostatic Equilibrium Equation (HSEE) [3, 4],

− ∂α(
√
−g p) =

√
−g ( e+ 3p ) ∂α

(
Φ

c2

)
. (3.12)

This relationship has been shown to lead to a modified and non singular Tolman-
Oppenheimer-Volkoff equation for star equilibrium [3, 4].

Note that the Tolman terms (e+ 3p) in (3.12) and (τ
(E)0
0 − τ (E)α

α ) in (3.11)

originate from the term (τ
(E)l
m − 1

2δ
l
mτ

(E)) in the second line of eqs. (3.7) or
(3.5), i .e. the Ricci curvature term R l

m in the second line of eq. (3.4).
A closed form analytical solution of eq. (3.12) was found [2], with gravita-

tional potential given by (r > 0),

Φ(r)

c2
= −1

3
ln

(
r0

r

)
− R0

r
, (3.13)

with free radii parameters r0 and R0 determined from certain boundary condi-
tions. The second term with R0 in eq. (3.13) is the homogeneous part given by

the solution of the Laplace equation ~∇2Φ = 0.
We further found [2] (r > 0),

e(r) =
c4 e−2R0/r

24πkr2
0

(
r0

r

)4/3

; p(r) =
c4 e−2R0/r

72πkr2
0

(
r0

r

)4/3

, (3.14)

which, for finite positive R0, allow the density and pressure to vanish in the
limit r → 0.

On the other hand, the observable energy and pressure densities are given by
the product of the proper densities with the factor

√
−g00(r) since the invariant
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spatial volume element in the reference frame of the calculation (the observer) is

given by
√
−g√
−g00

dV for a static spacetime (g0α = 0). Therefore we find (r > 0),

√
−g00(r) e(r) =

c4 e−3R0/r

24πkr2
0

(
r0

r

)
;
√
−g00(r) p(r) =

c4 e−3R0/r

72πkr2
0

(
r0

r

)
,

(3.15)

which again vanish in the limit r → 0.
The results of eq. (3.14) in terms of the proper energy density e(r) and

proper pressure density p(r) are to be compared with the high-density neu-
tron star results [11, 12] from the old Tolman-Oppenheimer-Volkoff hydrostatic
equilibrium formula for the Schwarzschild metric,

e(r) =
3c4

56πkr2
; p(r) =

c4

56πkr2
, (3.16)

which are infinite in the limit r → 0.

4 The Euler (Navier-Stokes) Equation

Equation (3.7) is an important universal matter dynamics relationship. We
emphasize its universality because it can describe all possible physical situations
of astrophysical matter source evolution, including viscosity, heat transport at
finite temperature, spacetime-dependent internal energy and pressure, magneto-
hydrodynamical and radiative effects, all characteristics of imperfect fluids, as
well as gravitational waves production, because of the full tensorial character of
the tensor potentials included in the formula.

In astrophysics, the Einstein energy-momentum tensor to treat in a unified
way all of these cases is given as follows,

τ
(E)k
j = [ e uju

k + p kj ]

p kj ≡ p∆ k
j + τ

(vsc)k
j + τ

(em)k
j

∆ k
j ≡ uju

k + δ kj ; uj∆ k
j = 0 , (4.1)

where (e, p) are the internal energy density and normal pressure respectively,

while τ
(vsc)k
j and τ

(em)k
j stand for the viscosity and electromagnetic stress-energy

tensors given respectively as follows,

τ
(vsc)k
j = −η ( ∆klDluj + ∆ l

jDlu
k ) + (ζ − 2

3
η) ∆ k

j Dlu
l ,

τ
(em)k
j =

1

4π
(FjlF

kl − 1

4
δkj FlmF

lm ) , (4.2)

with viscosity coefficients (η, ζ) and electromagnetic tensor Fik ≡ ∂iAk − ∂kAi.
The Einstein energy-momentum tensor (4.1) can be re-written as,

τ
(E)k
j = [w uju

k + p δ kj + τ
(vsc)k
j + τ

(em)k
j ]

w ≡ e + p , (4.3)

with w the enthalpy.
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The Euler equation in traditional General Relativity is derived by start-
ing with the Bianchi identity (3.1) written in terms of the Einstein energy-
momentum tensor,

Dkτ
(E)k
j = 0 . (4.4)

One then projects this equation to spaces parallel and perpendicular to the
4-velocity uj . We then get trivially,

ujDkτ
(E)k
j = 0 , (4.5)

and,

∆ j
l Dkτ

(E)k
j = 0 , (4.6)

from which one derives respectively the entropy flux equation and the Euler
equation per unit mass [13, 14],

Dkσ
k = −νkDk

µ

T
− 1

T
τ

(vsc)k
j Dku

j +
1

T
ujDkτ

(em)k
j , (4.7)

and,

w ukDkuj = −Dk(pδ kj + τ
(1)k
j )− ujukDl(pδ

l
k + τ

(1)l
k ) , (4.8)

in which ujτ
(vsc)k
j = 0 [13] and where we defined τ

(1)k
j ≡ τ (vsc)k

j + τ
(em)k
j as well

as the relativistic entropy density flux [13],

σk ≡ σuk − µ

T
νk , (4.9)

with σ the entropy density and νk a supplementary parameter explicitly given
by [13],

νk = − χ

c

(nT
w

)2

∆klDl
µ

T
, (4.10)

and proportional to the coefficient of thermal conductivity χ.
Both equations (4.7) or (4.8) are to be supplemented by the continuity equa-

tion [13],
Dkn

k = 0 ; nk ≡ nuk + νk ; ujνj = 0 , (4.11)

with n the matter (particle number) density and nk the 4-vector matter density
flux (current), as well as an equation of state satisfying the following thermo-
dynamical identity [13],

d
µ

T
= −

( w

nT 2

)
dT +

1

nT
dp . (4.12)

The Euler Equation per Unit Volume

It is often more convenient however to make use of the Euler equation per unit
volume, i .e. the equation for the conserved energy-momentum tensor (3.5), i .e.
the Freud identity,

∂k(
√
−g τ (E)k

j ) = −∂k(
√
−g t̃ (E)k

j )

= −2 (∂jφ
m
l )
√
−g
(
τ (E)l
m − 1

2
δ lmτ

(E)
)
, (4.13)
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with Tolman term (τ
(E)l
m − 1

2δ
l
mτ

(E)), essentially the Ricci curvature R l
m .

Making use of the Einstein energy-momentum tensor of eq. (4.3), we find
explicitly,

∂k[
√
−g (w uju

k + p δ kj + τ
(vsc)k
j + τ

(em)k
j )]

= −2 (∂jφ
m
l )
√
−g
[
(w umu

l + p δ lm + τ (vsc)l
m + τ (em)l

m )

−1

2
δlm(−w + 4p+ τ (vsc) + τ (em) )

]
, (4.14)

which is a universal magneto-hydrodynamical Euler (Navier-Stokes) equation for
astrophysical matter evolution (stars, galaxies, clusters, etc.). This is an entirely
new form for the Euler equation owing mainly to the presence of the Tolman
term, which greatly simplifies the dependence on the explicit gravitational field
in the equation. This is only possible in the context of the exponential (Yilmaz)
parametrization (1.1)-(1.3) of the metric tensor of Einstein General Relativity.

An important investigation avenue of the above general relativistic Navier-
Stokes equation is the application of the perturbative Jeans’ theory of gravi-
tational instability (galaxy formation, etc.) [15], as well as the study of sound
waves and their interactions with gravitational waves in collapsing objects.

5 Concluding Remarks

Of particular interest is the case of the so-called eternally collapsing objects
(ECOs/MECOs) [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] which
would involve an electromagnetic stress-energy tensor describing γ-radiation,
possibly in the geometrical optics (eikonal) approximation.

We already discussed in previous works [3, 4] the case of white dwarfs and
neutron stars. ECOs/MECOs on the other hand are believed to achieve the
so-called Eddington balance (equilibrium) between an outward radiation flux
and gravitational compression.

Let us recall the hydrostatic equation (3.12), which can be re-written as
[3, 4],

∂r(
√
−g p) = −

√
−g [ e(r) + 3p(r) ] ∂r

(
Φ

c2

)
= − k

4πr4
M1(r) ∂rM1(r) , (5.1)

where the gravitational mass M1(r) at radius r is related to the Tolman density
term as follows [3],

∂rM1(r) c2 = 4πr2
√
−g(r) [ e(r) + 3p(r) ]

M1(r) c2 ≡
∫ r

0

4πr2dr
√
−g(r) [ e(r) + 3p(r) ] . (5.2)

Now when the pressure inside the fluid is dominated by radiation pressure
p ' prad from an outward radiation flux, the luminosity Lr from the surface of
the spherical fluid at radius r is given by,

−∂r(
√
−g prad)√

−g [ e(r) + 3prad(r) ]
= ∂r

(
Φ

c2

)
=

κ

c3
Lr

4πr2
=

k

c2r2
M1(r) , (5.3)
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with constant opacity κ of the spherical stellar fluid. We then find trivially,

Lr =
4πkM1(r)c

κ
≡ Lr,Edd , (5.4)

which is the so-called Eddington luminosity for a gravitational mass M1(r) at
radius r.

Moving from hydrostatic equilibrium to the magneto-hydrodynamical Euler
equation (4.14), one should be in a position to observe the effects of radia-
tion pressure on gravitational collapse and its possible slow down toward the
ECO/MECO state. This is work for the future.
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