Foreword

In 1990, shortly after the death of Academician Zel'dovich, the first author, Andrei S. Kusubov, prepared an extensive obituary, and forwarded it to the journal *High Pressure Research* (HPR). Kusubov was the first to observe spinning detonation in a condensed explosive, a phenomenon first observed in the gas phase by Kiril Shelkin, a close colleague of Zel'dovich. Kusubov was also an officer of AIRAPT, the International High Pressure Organization, and also the Managing Editor of HPR.

When it got to the editor in chief of HPR, Marvin Ross, Ross reduced the submission to a much shortened version. This submission is the original version Kusubov submitted in its entirety. Note the dedication of Zel'dovich's text to the second author, Dr. R. N. Keeler.

It is not clear why Ross had such a low opinion of Zel'dovich. In a paper published in Uspekikh (Usp. Fiz. Nauk. **165**(5)595(1995)) it was revealed that after Boulder, Colorado, there was overwhelming support for Zel'dovich to be given the Bridgman Award. Since the 1989 conference was to be held in Kiev, this seemed all the more appropriate. When the very first Bridgman award was set up in Boulder, Harry Drickamer, the honoree, was asked to set up a procedure to facilitate the selection of the next recipient. His procedure was to have a panel of five scientists and select two candidates for the Executive Committee to choose from. Before the Kiev meeting, this panel met, and while there was strong support for Zel'dovich, Ross persuaded the panel not to choose him. At this point, the Executive Committee debated on whether to simply ignore the panel, or vote for one of the two choices given. It was finally decided to get rid of Ross, and the following year, Zel'dovich would be an almost unanimous choice. We would get rid of Ross, and proceed on with our choice. Unfortunately, Zel'dovich died in December, 1989.

Another point was made in the Uspekikh article. Zel'dovich did not believe in "Shock induced cooling". Russian investigators were unable to verify these experiments. An attempt by Ross to give a theoretical justification in HPR showed no evidence that it was ever subject to peer review, and worse, did not reference the most important document, a report by Hans Bethe.(Bethe, Hans A., Theory of Shock Waves for an Arbitrary Equation of State, OSRD Report 545, 1942). Nellis tried to get J. W. Shaner of Los Alamos to try to repeat these experiments, but Shaner refused.

We hope that proper and full credit can be given to Zel'dovich for his outstanding work on matter under extreme conditions.

The Editors, Journal of Cosmology

Andre Kusubov, Lawrence Livermore Laboratory, Livermore, CA and R. Norris Keeler, Los Alamos National Laboratory, Los Alamos, NM

THE DYNAMIC HIGH PRESSURE WORK OF ACADEMICIAN YA. B. ZEL'DOVICH (1914-87)

Academician of the Soviet Union Yakov Borisovich Zel'dovich was born in Minsk, USSR, on March 8, 1914. When he was a child, his family moved to Leningrad where he attended various secondary schools. Upon his graduation at the age of fifteen, he became a laboratory technician in the Mekhanobor Institute, assisting in various projects involved with the dressing and processing of industrially useful minerals. Two years later, at a field trip to the Leningrad Physicotechnical Institute, young Zel'dovich had the opportunity to present a number of his scientific ideas during a discussion session arranged for the group by the Institute Director, S. Z. Roginskii.

Impressed with the obvious ability of the young man, Roginskii arranged, with Academician A. I. Ioffe, for his immediate transfer to the Institute.

In the early years, the young Zel'dovich limited his work to various problems in surface phenomena such as adsorption, kinetics, and catalysis. He completed his Candidates Dissertation in 1936, at the age of 21. His work in this field led him to his first problems in high pressure physics and chemistry. Consideration of the kinetics of reactions, combustion and the effects of pressure on reactions, led Zel'dovich very naturally into studies of detonation phenomena. In 1939, he completed his doctorate, with the thesis topic "Formation of Nitrogen Oxide in Explosions." It is interesting to note that all his graduate studies were carried out without the benefit of any university course work whatsoever.

During his research on vapor liquid equilibria, Zel'dovich became interested in vapor-liquid critical phenomena, particularly in metals. He realized that in the critical region, there was the possibility that for metals, the classical van der Waals behavior did not coincide with what is now called the Mott transition. In 1943, he coauthored with Landau¹ the proposition that there could perhaps be two critical points, both connected to a triple point where liquid metal, conducting metal vapor and dielectric metal vapor were all in equilibrium. Although Zel'dovich did not pursue this particular area further, this paper was a forerunner of the brilliant work of Franck², and Hensel³ which gave the first experimental clues as to the existence of such phenomena in the critical region of metals. This field is extremely active to this day, with Hensel continuing his work on the alkali metals, and the groups of Shaner⁴ in the U. S. and Alexeyev⁵ in the USSR pursuing the more refractory metals to still higher critical pressures and temperatures. Interesting new theoretical results have also been obtained by Ashcroft⁶.

As mentioned previously, his early work in combustion led Zel'dovich to consideration of the Chapman-Jouguet hypothesis for detonation. These two earlier investigators argued that detonations were driven by shock waves, and the energy required to sustain the shock wave was provided by the energy released in the detonation. Their assumption of a constant detonation velocity also required, from a purely hydrodynamic standpoint, that the mass velocity of the detonation products plus the sound velocity in the detonation products was equal to the detonation velocity.^{7,8} This latter assumption could not be justified by any known physical model, and as a result, the role of the shock wave in the detonation process was not accepted for many years. In 1940 Zel'dovich first introduced the concept of the steady state reaction zone behind the detonation front, and the corresponding energy balance around this zone.⁹ This model gave rise to what is now called the Zel'dovich, von Neumann and Doering (ZND) model.

The twenty-five year old scientist developed and published his ideas at least two years before his colleagues in the West.^{10,11} He then followed with other papers refining and experimentally verifying the model.^{12,13} This model has served as the starting point for all detonation-hydrodynamic calculations for the past forty-five years, and is still a topic of intense interest today.^{14,15}

Having clarified the issue of steady state, one dimensional detonations, Zel'dovich turned his attention to the unsteady state, multidimensional detonation problem. With his collaborator K.I. Shchelkin, he developed the theory of "spinning detonation" in which a part of the detonation front moves circularly and at an oblique angle to the direction of the detonation^{16,17}. This phenomenon has been studied extensively in the U.S. in both gas^{18,19,20} and liquid^{21,22} high explosives by Duff and co-workers, and provides a natural point of departure from the simple theory of detonation.

His work in detonation naturally led Zel'dovich into the area of high pressure and shock waves. In his earliest work in high pressure physics, he pointed out that the measurements usually made in shock wave experiments provide only pressure, volume and energy.²³ For the first time, he pointed out that this shortcoming could be corrected by making Hugoniot measurements starting with the same material but at different densities, using dispersed or porous media. He also, in the same paper, pointed out both the utility and shortcomings of temperature measurements taken in shock wave experiments. Soviet investigators followed the publication of this paper with extensive programs in shock wave temperature measurements²⁴ and Hugoniot experiments on porous metals.²⁵ This work will be cited later.

In the course of studying critical phenomena²⁶, Zel'dovich was the first to note that anomalies on fluid isentropes could lead to shock fronts occurring during the high pressure

release process. This discovery made possible the explanation of the extremely smooth spallation planes encountered in recovery experiments on iron and its alloys shocked through the 130 kbar phase transition.²⁷ In 1980 this effect was finally observed, as Zel'dovich had predicted much earlier, near the

liquid-vapor critical point²⁸ Shortly thereafter, the effect was proposed by Zel'dovich as a tool for carrying out studies of the approach to equilibrium near the critical²⁹.

As his involvement in high pressure shock wave phenomena increased, Zel'dovich became interested in the thermal effects which are encountered in very high pressure shock waves. In some of his earliest work in the field he showed that radiative shock fronts in air must be discontinuous, in contrast to shock fronts where viscosity is the dissipative mechanism.³⁰ Subsequently, with his student, the late S.B. Kormer, he carried out the first measurements of temperature in a shock compressed solid³¹.

Zel'dovich also realized very early in his career the power of theory in anticipating phenomena which were later observed experimentally at high pressures. In 1944, he and Landau, amplifying on ideas developed in their 1943 paper, predicted band gap closure with an increase in pressure.³² This has been a topic of continuing interest, with the advent of increased capability in both static^{33,34} and dynamic^{35,36} experimental techniques. He collaborated with Gandelman in predicting the transition of nickel metal to an insulator at extremely high pressures³⁷, an effect most recently confirmed by McMahan³⁸, using the most sophisticated computational band gap theoretical techniques. And finally, he derived the relativistic limits for equations of state at very high density.³⁹ He has followed this high pressure interest to the present, in his current investigations of the properties of neutron stars⁴⁰ and other newly discovered astrophysical objects.

Most recently, Zel'dovich has returned to solve a very important practical problem involving detonation. Referring to his original work^{41,} he showed⁴² that damage from deflagrations can be comparable to damage from detonations, because of the increased duration of the pressure pulse in the deflagration case. He also showed that in the case of rough confining boundaries, such as might be found in rough pipes or mine shafts, for example, the losses in the deflagration (or detonation) process caused by this roughness do not tend to damp the combustion process. This has great importance in safety engineering, in protecting against the structural damage caused by these processes.

It is not possible to discuss the achievements of Zel'dovich in the field of dynamic high pressure without also describing the work of his students, S. B. Kormer and V. E. Fortov and his colleague, L. V. Al'tshuler. The strong influence of Zel'dovich on these men, and their subsequent accomplishments were responsible for establishing the clear leadership of the Soviet Union in the field of dynamic high pressure. So dominant were Al'tshuler and Kormer in this field that all the significant dynamic high pressure experiments were done initially by this group. Extremely high pressure measurements,⁴³ temperature measurements,³¹ optical measurements,⁴⁴ electrical conductivity,^{45,46} and its mechanism,⁴⁷ melting^{4,8} kinetics of electronic and

thermodynamic processes,^{49,50} transport properties,⁵¹ and sound velocity⁵² were all done in the Soviet Union long before scientists in the West were able to carry out similar measurements.

In recent years, leadership in the dynamic high pressure field has been assumed by a younger student and colleague of Zel'dovich, V.E. Fortov. Fortov has created an entirely new field in the area of dynamic high pressure physics. Starting from his original work in dense plasmas as a student, Fortov has applied dynamic techniques to the measurement of dense plasma properties. Formerly, theories of dense plasmas were formulated with little, if any, hope of verification. Now, Fortov and his group are systematically opening up the high temperature, extended volume regime with both equilibrium and transport property measurements on both metals and nonmetallic substances.^{5,53,54,55,56,57} This work has already stimulated intense interest in the Soviet Union^{58,59} and the West^{60,61}, and is providing new stimulus for theoreticians working on the description of dense plasmas. In the area of applied research, Fortov was responsible for design of the meteorite impact shields for the very successful "Vega" space probe of Halley's comet⁶².

The work of Al'tshuler, Kormer and Fortov is characterized by an unusually innovative approach to dynamic experimentation, the courage to address very difficult experimental problems, the choice of the most significant problems to address, an exceptionally thorough grasp of the critical experimental variables and their significance, and finally, an unusually deep intuition for the fundamental physics they addressed in their high pressure experiments. Certainly, these three outstanding Soviet scientists are also due recognition for the many achievements of their distinguished careers.

Textbooks written by Zel'dovich and his co-workers have served a generation of physicists throughout the world. Two such texts in the high pressure field are "Physics of Shock Waves and High Temperature Hydrodynamic Phenomena", with Yu. Raizer, and "Theory of Detonation", with A.S. Kompaneets. These two texts alone have been extensively reprinted in many countries, and are still in continued use today.

Finally, note must be taken of the tremendous volume of original and insightful work done by Zel'dovich in other fields. It is a tribute to his creativity and brilliance that even though his work in shock waves and detonations only occupied a part of his scientific career, he still remains the single dominating historical figure in the dynamic high pressure field. It should also be recalled here that much of his most significant work as a young man was carried out at a time when his country was fighting desperately for its very existence. There were no scientific meetings, no visits abroad, only the occasional collaboration with local colleagues. The first priority for all his efforts was related to defense matters.

In looking back at the long and productive career of Academician Zel'dovich, one cannot fail to note that having established a particular field, or area within a discipline, he often returns to touch on significant issues, frequently with former colleagues. He is generous in his recognition of those experimentalists and

theoreticians who have worked with him.⁶³ Certainly, having once been a colleague of Zel'dovich is to have gained a colleague for life.

Just as Professor P.W. Bridgman opened many exciting avenues for research in the static high pressure field, so Academician Zel'dovich has done the same for the worldwide community of dynamic high

pressure scientists and engineers. He is a worthy representative of his country, the community of high

pressure scientists and indeed, of the scientists of the entire world.

References

- 1. Landau, L.D. and Ya. B. Zel'dovich, Acta Physicochemica URSS <u>18</u>, 194 (1943)
- 2. Franck, E.U. and F. Hensel, Ber. Bunsen. Phys. Chem. 70, 1154 (1966)
- 3. Jungst, S., B. Knuth, and F. Hensel, Phys. Rev. Lett. <u>55</u>, 2160 (1985)
- 4. Hixson, R.S., M.A. Winkler and J.W. Shaner, Int. Journ. Thermophys. 7, 161(1986)
- 5. Alexeyev, V.A., V.E. Fortov, and I.T. Yakubov, Usp. Fiz. Nauk. <u>139</u>, 193 (1983)
- 6. Goldstein, R.E. and N.W. Ashcroft, Phys. Rev. Lett. <u>55</u>, 2164 (1985)
- 7. Chapman, D.L., Phil. Mag. <u>47</u> 90(1899)
- 8. Jouguet, E., J. de Mathematiques Pures et Appliquees <u>1</u>, 347(1905)
- 9. Zel'dovich, Ya. B., ZhTF <u>10</u>, 1453(1940); JETP <u>10</u>, 542(1940)
- 10. von Neumann, J., Office of Scientific Research and Development (USA) Report No. 549, 1942
- 11. Doering, W. Ann. Phys. <u>43</u>, 421(1943)
- 12. Zel'dovich, Ya. B. and O. Leipunskiy, Acta Physicochimica URSS <u>18</u>, 167(1943)
- 13. Zel'dovich, Ya. B. and B.V. Aivazov, JETP <u>17</u>, 889 (1947)
- 14. Davis, W.C., Los Alamos Science <u>2</u>, 48 (1981)
- 15. Lee, E.L. and L.G. Green, Energy and Technology Review, Lawrence Livermore National Laboratory UCRL 52000-84-10, October, 1984, p. 24
- 16. Zel'dovich, Ya. B., Dokl. Akad. Nauk SSSR 52, 147 (1946)
- 17. Shchelkin, K.I., JETP 36, 600 (1959)
- 18. Duff, R.E., Phys. Fluids 4, 1427 (1961)
- 19. Duff, R.E. in Fourth Symposium (International) on Detonation, Office of Naval Research, Washington, D.C., 1965 p. 198
- 20. Duff, R.E. and M. Finger, Phys. Fluids 8, 764 (1965)
- 21. Urtiew, P.A. and A.S. Kusubov, Fifth Symposium (International) on Detonation, Office of Naval Research, Washington, D.C., 1970 p. 105
- 22. Urtiew, P.A., A.S. Kusubov and R.E. Duff, Combust. Flame 14, 117 (1970)
- 23. Zel'dovich, Ya. B., JETP 32, 1577 (1957)
- 24. Kormer, S.B., Usp. Fiz. Nauk 94, 641 (1968)
- 25. Al'tshuler, L.V., Usp. Fiz. Nauk 85,197 (1965)
- 26. Zel'dovich, Ya. B., JETP 16, 365 (1946)
- 27. Ivanov, A.G. and S. A. Novikov, Soviet Physics JETP 13, 1321(1961)
- 28. Borisov, Al. A., A.A. Borisov, S.S. Kutateladze, and V.E. Nakoryakov, JETP Pis. Red. 31, 619 (1980)
- 29. Zel'dovich, Ya. B., JETP 53, 2111 (1981)
- 30. Zel'dovich, Ya. B. JETP 32, 1126 (1957)
- 31. Zel'dovich, Ya. B., S.B. Kormer, M.V. Sinitsyn and A.I. Kuriakin, Dokl. Akad. Nauk SSSR 122, 48 (1958)
- 32. Zel'dovich, Ya. B. and L.D. Landau JETP 14, 32 (1944)
- 33. Williams, Q. and R. Jeanloz, Phys. Rev. Lett. 56, 163 (1986)
- 34. Reichlin, R., M. Ross, S. Martin and K.A. Goettel, Phys. Rev. Lett. 56, 2858(1986)

- 35. Work of A.C. Mitchell cited in "Six Lectures on Shock Wave Physics" R.N. Keeler and E.B. Royce, Proceedings of the International School of Physics "Enrico Fermi," Course xlviii, "Physics of High Energy Density," P. Caldirola, ed., Academic Press, New York, N.Y., 1971, p. 119
- 36. Hamilton, D. A., Ph. D. Thesis, University of California, Lawrence Livermore National Laboratory, Livermore, California, 1986
- 37. Gandelman, G.M., V.M. Ermachenko, and Ya. B. Zel'dovich, JETP 44, 386 (1963)
- 38. McMahan, A.K., Xth AIRAPT International High Pressure Conference, N. Trappeniers et al. eds., North-Holland, Amsterdam, 1986, p.31; A.K. McMahan and R.C. Albers, Phys. Rev. Lett. 49, 1198 (1984)
- 39. Zel'dovich, Ya. B., JETP 41, 160 (1961)
- 40. Zel'dovich, Ya. B. and R.A. Syunyaev, JETP 62, 153 (1972)
- 41. Zel'dovich, Ya. B., Theory of Combustion and Detonation of Gases, Izd. Akad. Nauk. SSSR, Moscow, USSR, 1944
- 42. Zel'dovich, Ya. B., A.A. Borisov, B.E. Gel'fand, S. V. Khomik and A.E. Mailkov, Dokl. Akad. Nauk. SSSR 279, 1359 (1984)
- 43. Al'tshuler, L.V., K.K. Krupnikov and M.I. Brazhnik, Soviet Physics JETP 7, 6146(1958)
- 44. Zel'dovich, Ya. B., Kormer, S.B., Sinitsyn, M.V., and Yushko, K.B., Dokl. Akad. Nauk. SSSR 138, 1333(1961)
- 45. Brish, A A., M.S. Tarasov and V.A. Tsukerman, Soviet Phys. JETP 11, 15 (1960)
- 46. Al'tshuler, L.V., L.V. Kuleshova and M.N. Pavlovskii, Soviet Physics JETP 12, 10 (1961)
- 47. Kormer, S.B., M.V. Sinitsyn, G. A. Kirillov and L.T. Popova, JETP 49, 135 (1965)
- 48. Urlin, V.D. and A.A. Ivanov, Dokl. Akad. Nauk SSSR 149, 1303 (1963)
- 49. Zel'dovich, Ya. B., S.B. Kormer and V.D. Urlin, JETP 55, 1631 (1969)
- 50. Al'tshuler, L.V., M.N. Pavlovskii, L.V. Kuleshova and G.V. Simakov, Fiz. Tverd. Tela 5, 279 (1963)
- 51. Al'tshuler, L.V., G.I. Kanel' and B.S. Chekin, JETP 72, 663 (1977)
- 52. Al'tshuler, L.V., S.B. Kormer, M.L. Brazhnik, L.A. Vladimirov, M.P. Speranskaya and A.I. Funtikov, Soviet Physics JETP 11, 766 (1960)
- 53. Fortov, V.E. and Yu. G. Krasinkov, JETP 59, 1625 (1970)
- 54. Fortov, V.E., A.A. Leontiev, V.K. Gryaznov, and A.N. Dremin, JETP 71, 225 (1976)
- 55. Bespalov, V.E., L.G. D'yakov, G.A. Kobzev, and V.E. Fortov, Teplofiz. Vysokh. Temp. 17, 266 (1979)
- 56. Fortov, V.E., Dinamicheskiye Metodiy v Fizike Plazmy, Akad. Nauk SSSR Otdeleniye Inst. Khimicheskoye Fiziki, Chernogolovka, USSR, 1981; S.I. Anisimov, A.M. Prokhorov and V.E. Fortov, Usp. Fiz. Nauk 142, 395 (1984)
- 57. Isakov, I.M., A.A. Likalter, B.N. Lomakin, A.D. Lopatin and V.E. Fortov, JETP 87, 832 (1984)
- 58. Kobzev, G.A., Yu. K. Kurilenkov and G.E. Norman, Teplofiz. Vysok. Temp. 15, 193 (1977)
- 59. Kobzev, G.A., "Optical Properties of Dense Plasmas," paper presented at the Strongly Coupled Plasma Meeting, University of California, Santa Cruz, August 4-9, 1986
- 60. Kraeft, W., "Strongly Coupled Partially Ionized Plasmas," paper presented at the Strongly Coupled Plasma Meeting, University of California, Santa Cruz, August 4-9, 1986
- 61. Shore, B.W., Journ, Phys. 88, 2023 (1975)
- 62. Anisimov, S.I., A.V. Bushman, G.I. Kanel', A.B. Konstantinov, R.Z. Sagdeev, S.G. Sugak and V.E. Fortov, JETP Pis'ma 39, 9 (1984)
- 63. See, for example, the acknowledgement by Zel'dovich of V.A. Tsukerman, G.L. Schnirman, A.S. Dubovik, P.V. Kelishvili, and E.K. Zavoiskii in "Physics of Shock Waves and High Temperature Hydrodynamic Phenomena," v. 2, Ya. B. Zel'dovich and Yu P. Raizer, Academic Press, New York, N.Y., 1967, p. 686