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ABSTRACT
The interstellar medium (ISM) is governed by supersonic turbulence on a range of scales. We
use this simple fact to develop a rigorous excursion-set model for the formation, structure and
time evolution of dense gas structures [e.g. giant molecular clouds (GMCs), massive clumps
and cores]. Supersonic turbulence drives the density distribution in non-self-gravitating regions
to a lognormal with dispersion increasing with Mach number. We generalize this to include
scales �h (the disc scale-height), and use it to construct the statistical properties of the density
field smoothed on a scale R. We then compare conditions for self-gravitating collapse including
thermal, turbulent and rotational (disc shear) support (reducing to the Jeans/Toomre criterion
on small/large scales). We show that this becomes a well-defined barrier crossing problem. As
such, an exact ‘bound object mass function’ can be derived, from scales of the sonic length
to well above the disc Jeans mass. This agrees remarkably well with observed GMC mass
functions in the Milky Way and other galaxies, with the only inputs being the total mass and
size of the galaxies (to normalize the model). This explains the cut-off of the mass function
and its power-law slope (close to, but slightly shallower than, −2). The model also predicts
the linewidth–size and size–mass relations of clouds and the dependence of residuals from
these relations on mean surface density/pressure, in excellent agreement with observations. We
use this to predict the spatial correlation function/clustering of clouds and, by extension, star
clusters; these also agree well with observations. We predict the size/mass function of ‘bubbles’
or ‘holes’ in the ISM, and show that this can account for the observed H I hole distribution
without requiring any local feedback/heating sources. We generalize the model to construct
time-dependent ‘merger/fragmentation trees’ which can be used to follow cloud evolution and
construct semi-analytic models for the ISM, GMCs and star-forming populations. We provide
explicit recipes to construct these trees. We use a simple example to show that if clouds are
not destroyed in ∼1–5 crossing times, then all the ISM mass would be trapped in collapsing
objects even if the large-scale turbulent cascade were maintained.

Key words: stars: formation – galaxies: active – galaxies: evolution – galaxies: formation –
cosmology: theory.

1 IN T RO D U C T I O N

The origins and nature of structure in the interstellar medium (ISM)
and giant molecular clouds (GMCs) represents one of the most im-
portant unresolved topics in both the study of star formation and
galaxy formation. In recent years, there have been several major ad-
vances in our understanding of the relevant processes. It is clear that
a large fraction of the mass in the ISM is supersonically turbulent
over a wide range of scales, from the sonic length (∼0.1 pc) through
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and above the disc scale-height (∼kpc). A generic consequence of
this supersonic turbulence – so long as it can be maintained – is that
the density distribution converges towards a lognormal probability
distribution function (PDF), with a dispersion that scales weakly
with Mach number (e.g. Vazquez-Semadeni 1994; Padoan, Nord-
lund & Jones 1997; Scalo et al. 1998; Ostriker, Gammie & Stone
1999).

Without continuous energy injection, this turbulence would dis-
sipate in a single crossing time, and the processes that ‘pump’
turbulence (generally assumed to be related to feedback from mas-
sive stars) remain poorly understood (see e.g. Mac Low & Klessen
2004; McKee & Ostriker 2007; Hopkins, Quataert & Murray 2012
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and references therein). However, provided this turbulence can be
maintained, it is able to explain the relatively small fraction of
mass which collapses under the runaway effects of self-gravity and
cooling (Vázquez-Semadeni, Ballesteros-Paredes & Klessen 2003;
Li et al. 2004; Li & Nakamura 2006; Padoan & Nordlund 2011).
In this picture, star formation occurs within dense cores, them-
selves typically embedded inside giant molecular clouds (GMCs),
which represent regions where turbulent density fluctuations be-
come sufficiently overdense so as to be marginally self-gravitating
and collapse (Evans 1999; Gao & Solomon 2004; Bussmann et al.
2008). Some other process such as stellar feedback is believed to
be responsible for disrupting the clouds, after a few crossing times
(e.g. Evans et al. 2009). The turbulent cascade has also been in-
voked to explain GMC scaling relations, such as the size–mass and
linewidth–size relations (Larson 1981; Scoville et al. 1987).

However, despite this progress, there remains no rigorous analytic
theory that can simultaneously predict these properties, as well as
other key observables such as the GMC mass function, and the
spatial distribution of gas over- and underdensities in the ISM.

The approximately Gaussian distribution of the logarithmic den-
sity field, though, suggests that considerable progress might be
made by adapting the excursion-set or ‘extended Press–Schechter’
formalism. This has proved to be an extremely powerful tool in
the study of cosmology and galaxy evolution. The seminal work by
Press & Schechter (1974) derived the form of the halo mass function
via a simple (albeit somewhat ad hoc) calculation of the mass frac-
tion expected to be above a given threshold for collapse, expected in
a Gaussian overdensity distribution with the variance as a function
of scale derived from the density power spectrum. Bond et al. (1991)
developed a rigorous analytic (and statistical Monte Carlo) formu-
lation of this, defining the excursion-set formalism for dark matter
haloes. Famously, this resolved the ‘cloud-in-cloud’ problem, pro-
viding a means to calculate whether structures were embedded in
larger collapsing regions. Since then, excursion-set models of dark
matter have been studied extensively: they have been generalized
and used to predict – in addition to the halo mass function – the spa-
tial distribution/correlation function of haloes (Mo & White 1996),
the distribution of voids (Sheth & van de Weygaert 2004), the evo-
lution and structure of H II regions in reionization (Haiman, Abel
& Rees 2000; Furlanetto, Zaldarriaga & Hernquist 2004) and many
higher order properties used as cosmological probes. By incorpo-
rating the time-dependence of the field, they have been used to
study the growth and merger histories of haloes and to construct
Monte Carlo ‘merger trees’ (Bower 1991; Lacey & Cole 1993).
These trees formed the basis for the extensive field of semi-analytic
models for galaxy formation, in which analytic physical prescrip-
tions for galaxy evolution are ‘painted on to’ the background halo
evolution (e.g. Somerville & Kolatt 1999; Cole et al. 2000). It is
not an exaggeration to say that it has proved to be one of the most
powerful theoretical tools in the study of large-scale structure and
galaxy formation.

There have been other growing suggestions of similarities be-
tween the mathematical structure of the ISM and that invoked
in excursion-set theory. The mass function of GMCs, for exam-
ple, has a faint-end slope quite similar to that of galaxy haloes
(both close to dn/dM ∝ M−2), suggestive of hierarchical collapse.
Vazquez-Semadeni (1994) attempted to rigorously examine whether
the structure of the ISM should be ‘hierarchical’, although they
strictly define this as the probability of many independent fluctua-
tions dominating the ‘peaks’ in the density distribution (which does
not technically need to be satisfied in excursion-set theory). This is
related to (but not equivalent to) the large body of work on the quasi-

fractal structure of the ISM (see e.g. Elmegreen 2002 and references
therein). On smaller scales, Krumholz & McKee (2005) suggested
that the fraction of a lognormal PDF above a ‘collapse threshold’ at
the sonic length could explain the fractional mass forming stars per
free-fall time, inside of GMCs. Padoan et al. (1997) and Padoan &
Nordlund (2002) suggested that the distribution of lognormal den-
sity fluctuations above a threshold overdensity could explain the
shape of the stellar initial mass function (IMF). Scalo et al. (1998)
explicitly discuss the analogy between this and cosmological den-
sity fluctuations, and Hennebelle & Chabrier (2008) expanded upon
the Padoan et al. (1997) argument using a derivation almost exactly
analogous to the original Press & Schechter (1974) derivation, and
showed that it agreed well with the standard IMF.

But despite these suggestions, and the enormous successes of the
excursion-set model in cosmological applications, there has been no
attempt to translate the excursion-set formalism to the problem of
the ISM and GMC evolution. At first glance, it is obvious why. The
cosmological excursion-set theory is applied to small fluctuations
of the linear density field, in the linear regime, to dark matter (col-
lisionless) systems, with Gaussian, nearly scale-free fluctuations
seeded by inflation, and to Lagrangian ‘haloes’ which (modulo
mergers) are conserved in time. The Gaussian distribution of ISM
densities represents large fluctuations in the logarithmic density
field, which are a product of a fully non-linear, turbulent, gaseous
(collisional) medium, and evolve both rapidly and stochastically in
time.

However, in this paper, we will show that although the physics
involved are very different, none of these differences fundamentally
invalidates the underlying mathematical formalism of the excursion-
set theory.

Here, we develop a rigorous excursion-set model for the for-
mation, structure and time evolution of structures in the ISM and
within GMCs. We show that this is possible, and that it allows us to
develop statistical predictions of ISM properties in a manner anal-
ogous to the predictions for the halo mass function. In Section 2
we describe the model. First (Section 2.1), we derive the conditions
for self-gravitating collapse in a turbulent medium (the ‘collapse
threshold’), in a manner generalized to both small (sonic length)
and large (above the disc scale-height) scales. Next (Section 2.2),
we discuss the density field and, assuming it has a lognormal char-
acter, construct the statistical properties of the field smoothed on a
physical scale R, which allows us to define the excursion-set ‘barrier
crossing’ problem. In Section 3, we use this to derive an exact ‘self-
gravitating object’ mass function, over the entire range of masses
(from the sonic length to disc mass), and show that it agrees remark-
ably well with observed GMC mass functions and depends only very
weakly on the exact turbulent properties of the medium (including
deviations from a lognormal PDF). In Section 4, we show that the
model also predicts the linewidth–size and size–mass relations of
GMCs, and their dependence on external galaxy properties. We also
examine how this depends on the exact properties of the turbulent
cascade. In Section 5, we extend the model to predict the spatial
correlation function and clustering properties of clouds (and, by ex-
tension, young star clusters), and compare this to observations. In
Section 6, we predict the size and mass distributions of underdense
‘bubbles’ or ‘holes’ in the ISM which result simply from the same
normal turbulent motions. We show that this can explain most or
all of the distribution of H I ‘holes’ observed in nearby galaxies,
without explicitly requiring any feedback mechanism to power the
hole expansion. In Section 7, we generalize the model to construct
time-dependent ‘GMC merger/fragmentation trees’ which follow
the time evolution, growth histories, fragmentation and mergers of

C© 2012 The Author, MNRAS 423, 2016–2036
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



2018 P. F. Hopkins

clouds. In Section 7.2, we provide simple recipes to construct these
trees, and discuss how they can be used to build semi-analytic mod-
els for GMC and ISM evolution and star formation, in direct analogy
to semi-analytic models for galaxy formation. We use a very simple
example of this to predict the rate at which the gas in the ISM col-
lapses (absent feedback) into bound structures, show that this agrees
well with the results of fully non-linear turbulent box simulations
and argue that feedback must destroy clouds on a short time-scale (a
few crossing times) to prevent runaway gas consumption. Finally,
in Section 8, we summarize our results and conclusions and dis-
cuss a number of possibilities for future work, both to improve the
accuracy of these models and to enable predictions for additional
properties of the ISM.

2 TH E MO D EL

The fundamental assumption of our model is that non-rotational
velocities are dominated by supersonic turbulence (down to some
sonic length), with some power spectrum P(k) or E(k)1 which is
maintained by any process (presumably stellar feedback) in approx-
imate statistical steady state. As we discuss in Section 8, all other
assumptions we make are convenient approximations to simplify
our calculations, but it is possible to generalize the model.

The two key quantities we need to calculate the cloud mass func-
tion and other properties are the conditions for ‘collapse’ of a cloud
(i.e. conditions under which self-gravity can overcome turbulent
forcing) and the power spectrum of density fluctuations. Below, we
show how these can be calculated for a turbulent medium from
the velocity power spectrum; however, in principle they can be
completely arbitrary (for example, specified ad hoc from numerical
simulations or observations). So long as they are known, the rest of
our model proceeds identically.

2.1 Collapse in a turbulent medium

First, for simplicity, consider gas in a galaxy whose average prop-
erties are evaluated on a scale R where the velocity dispersion is
highly supersonic (R � �sonic, where �sonic is the sonic length),
but where shear from the disc rotation and large-scale density
gradients can be neglected (R � h, where h is the disc scale-
height). The turbulent dispersion on these scales is 〈vt(R)2〉 ∼
k E(k). If the turbulence has a power-law cascade over this in-
terval, then E(k) ∝ k−p. If the region has some mean density
ρ (on the same scale R), then the potential from self-gravity is
|U | ≈ βGM/R ≈ βGρ(4π/3) R2 while the kinetic energy in tur-
bulence is (1/2) 〈vt(R)2〉; the region will be gravitationally bound
and ‘trapped’ when ρ � ρc = (3/8πβ) 〈vt(R)2〉/GR2, where β ∼ 1
depends on the shape (internal structure) of the density perturbation.
Formally, we also need to check whether the momentum ‘input’ rate
from the turbulent cascade (equal to the dissipation rate in steady
state) is less than the gravitational force, and whether the energy
input rate is less than the rate at which a gravitationally collapsing
object will dissipate. However, because for supersonic turbulence,
the time-scale for energy or momentum dissipation on a scale R just

1 There are different conventions in the turbulence and excursion-set liter-
ature for the normalization and k-dependence in the definition of P(k). To
simplify matters, we will refer to the velocity power spectrum by means of
E(k), which with the assumption of isotropic turbulence gives the differential
energy per mode as dE = E(k) dk.

scales with the crossing time tcross = R/vt(R), we obtain the identical
dimensional scaling for all of these criteria.2

These are simply a restatement of the Jeans criterion, for
wavenumber k ∼ 1/R, but with the sound speed cs replaced by
the turbulent velocity dispersion vt. For an individual k-mode (si-
nusoidal density perturbation), the criterion becomes

ρ(R) ≥
k2

〈
v2

t (k)
〉

4π G
∝ k3−p ∝ Rp−3, (1)

where the latter equalities assume a power-law spectrum (Vazquez-
Semadeni & Gazol 1995). If the system is marginally stable
with density ρ0 on scale R0, then this simply becomes ρ(R) ≥
ρ0 (R/R0)p−3. If we are in the supersonic regime, then we expect
something like Burgers turbulence (Burgers 1973), with p ≈ 2; but
we will discuss this further below.

Now generalize this to a more broad range of radii. On small
scales, we need to include the effects of thermal pressure: this
amounts to a straightforward modification of the Jeans criterion
with v2

t → c2
s + v2

t (Chandrasekhar 1951; Bonazzola et al. 1987).3

On large scales, we need to include the effects of rotation stabilizing
perturbations. If we focused only on very large (R � h) scales,
where we can neglect the disc thickness, then we simply re-derive
the Toomre (1977) dispersion relation and collapse conditions, with
the gas ‘dispersion’ σ 2

g = v2
t + c2

s . More generally, Begelman &
Shlosman (2009) note that the dispersion relation for growth of
density perturbations in a turbulent disc (with finite thickness h)
can be written as

ω2 = κ2 + σg(k)2 k2 − 2πG	 |k|
1 + |k| h , (2)

= κ2 + σg(k)2 k2 − 4π G ρ |k| h
1 + |k| h , (3)

where 	 ≡ 2hρ is the disc surface density, ρ is the average density
on scale k, and h is the disc scale-height, vt is the turbulent velocity
dispersion, and κ is the usual epicyclic frequency. This differs from
the infinitely thin-disc dispersion relation by the term (1 + |k| h)−1,
which accounts for the finite scale-height for modes with scales
λ � h (Elmegreen 1987).4 Note that this relation nicely interpolates
between the Jeans criterion, which we derived above on small scales
(k � h−1), and the Toomre (thin-disc) dispersion relation on large
scales (k � h−1).

2 The energy injection rate in the turbulence is u̇ = (1/2) v2
t (R)/(η tcross) =

(1/2) v2
t /(η R/vt), where η ∼ 1 is constant. A virialized object where cooling

is rapid (i.e. pressure forces can be neglected), where the virial motions are
turbulent, will then just lose energy at a rate= (1/2) |U |/(ηR/

√
βGM/R) –

equating these gives an identical dimensional requirement on ρ to the binding
criterion, but with a slightly different coefficient. Equating the turbulent
momentum input rate d(Mvt)/dt = M vt/(η tcross) to the gravitational force
Fgrav ≈ GM/R2 again gives the identical result. We should take the most
stringent normalization from these as the relevant criterion, but this is entirely
degenerate with the value of β ∼ 1. For a rigorous derivation of each of
these criteria, see Bonazzola et al. (1987).
3 It is likely that the power spectrum of velocities vt will change as we go to
scales below the sonic length; however, since (by definition) vt < cs in this
regime, such corrections have essentially no effect on our results. Moreover,
the change – expected to be e.g. a transition from p = 2 to p = 5/3 – is small
for our purposes.
4 Equation (2) is an exact solution for a disc with an exponential vertical
profile. It is also always asymptotically exact at small and large |k| and tends
to be within ∼10 per cent of the exact solution at all |k| for the range of
observed vertical profiles (see Kim, Ostriker & Stone 2002).
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If the average density is ρ0 and the corresponding average surface
density is 	0, then we can define the usual Toomre Q at the scale h:

Q0(h) ≡ κ σg(h)

π G 	0
= h κ̃ �2

π G 	0
, (4)

where the second equality follows from σ g(h) = h �, which is true
for any disc in vertical equilibrium, and we define κ̃ ≡ κ/� (= √

2
for a constant-Vc disc). If we define the convenient dimensionless
form of k, k̃ ≡ |k| h, we can write the criterion for instability (ω2 <

0) as

ρ

ρ0
≥ ρc

ρ0
≡ Q0(h)

2 κ̃
(1 + k̃)

[
σg(k)2

σg(h)2
k̃ + κ̃2 k̃−1

]
. (5)

Note that the assumption of a finite Q0 ensures that so long as
there is any non-gaseous component of the potential, the gas alone
is not self-gravitating on arbitrarily large scales (this is important
below, to unambiguously define the largest self-gravitating scales
of clouds). Again, on small scales kh � 1, this reduces to the Jeans
criterion ρc = k2 σg(k)2/(4π G) ∝ Rp−3, and on large scales kh �
1 it becomes ρc = 	c/2h = (k h)−1κ2/(4πG) ∝ R.

Kim et al. (2002) note that it is straightforward to further general-
ize this criterion to include the effects of magnetic fields by taking
σ 2

g = v2
t + c2

s + v2
A, where v2

A is the Alfvèn speed. If we follow
the usual convention in the literature and assume that β ≡ c2

s /v
2
A is

constant, then changing the strength of magnetic fields is identically
equivalent to changing the sound speed/Mach number (which we
explicitly consider below). Even if we allow β to have an arbitrary
power spectrum, the results are quite similar to this renormalization
– for any power spectrum where the magnetic energy density is
peaked on large scales, it is nearly equivalent to renormalizing the
turbulent velocities; for a power spectrum peaked on small scales,
equivalent to renormalizing the sound speed. We therefore will not
explicitly consider magnetic fields in what follows, but emphasize
that they are straightforward to include if their power spectrum is
known.

Formally, the turbulent velocity power spectrum E(k) must even-
tually flatten/turn over on large scales R � h, both by definition
(since h itself traces the maximal three-dimensional dispersions)
and to avoid energy divergences. If it did not, we would recover
vt � Vc on large scales in gas-rich systems. Constancy of energy
transfer and energy conservation require that the slope become at
least as shallow as E(k) ∝ k−1. A good approximation to the be-
haviour seen in simulations is obtained by generalizing the exact
correction for k near the lowest wavenumbers in the inertial scale in
Kolmogorov turbulence (Bowman 1996), taking E(k) → E(k) (1 +
|k h|−2)(1−p)/2, which interpolates between these regimes. This may
not be exact. Fortunately however, even if we ignored this correc-
tion entirely, we can see immediately from equation (5) that for any
reasonable power spectrum (p < 3), the dominant velocity/pressure
term on scales �h is the disc shear (∼κ R), not vt. We therefore in-
clude this turnover, but stress that it is not necessary to our derivation
and has only weak effects on our conclusions.

2.2 The density distribution

The other required ingredient for our model is an estimate of the
density PDF/power spectrum. We emphasize that our methodology
is robust to the choice of an arbitrary PDF and/or power spectrum in
ρ. We could, for example, simply extract a density power spectrum
(or fit to it) from simulations or observations. This is, however,
less predictive – so in this paper, we chose to focus on the case
of supersonic turbulence in which case it is possible to (at least

approximately) construct the density PDF knowing only the velocity
power spectrum information.

As discussed in Section 1, in idealized simulations of supersonic
turbulence with a well-defined mean density ρ0 and Mach number
M on a scale of k ∼ 1/R, the distribution of densities tends towards
a lognormal distribution

dp(δ | k) = 1

σk

√
2π

exp

(
− δ2

2 σ 2
k

)
dδ, (6)

δ ≡ ln

(
ρ

ρ0

)
−

〈
ln

(
ρ

ρ0

)〉
, (7)

where because ρ0 is the mean density,〈
ln

(
ρ

ρ0

)〉
= −σ 2

k

2
. (8)

This form of the PDF and our results are identical whether we
define all quantities as volume-weighted or mass-weighted, so long
as we are consistent throughout: here it is convenient to define all
properties as volume-weighted (otherwise ρ0 is scale-dependent).

The dispersion in these simulations is a function of the rms (one-
dimensional) Mach number averaged on the same scale M(k),

σk ≈
(

ln

[
1 + 3

4
M(k)2

])1/2

, (9)

which is naturally expected for supersonic turbulence with efficient
cooling [because the variance in ln (ρ) in ‘events’ – namely strong
shocks – scales as ln (M2)].5

If the turbulence obeys locality – i.e. if the density distribution
averaged on some small scale R1 depends only on the local gas prop-
erties on that scale as opposed to e.g. the structure on much larger
scales R2 � R1 – then the distribution of densities δ(x, R) averaged
over any spatial scale R with some window function W (x, R) is
also a lognormal in δ, with variance

σ 2(R) =
∫

d ln (k) σ 2
k (M[k]) |W (k, R)|2, (10)

where W(k, R) is the Fourier transform of W(x, R). This is easy
to see if we recursively divide an initially large volume (e.g. the
entire disc) into subregions with different mean ρ0 and M on scale
R; each of these subregions is a ‘box’ that should obey the den-
sity distributions above, and so on. Because it greatly simplifies
the algebra, we will generally follow the standard practice in the
excursion-set literature and choose W(k, R) to be a Fourier-space
tophat: W(k | Rw) = 1 if k ≤ R−1

w and W(k | Rw) = 0 if k > R−1
w .

This choice is arbitrary, but so long as it is treated consistently,
our subsequent results are essentially identical (we will show, for
example, that using a Gaussian window function makes a small
difference in all predicted quantities).6

5 The exact coefficient in front of M2 in this scaling does depend on e.g.
the form of turbulent forcing and other details (Federrath et al. 2010; Price,
Federrath & Brunt 2011). For our purposes, however, this is entirely de-
generate with the normalization of the velocity/scale-height of the disc and
enters very weakly (sub-logarithmically). It is potentially more important,
however, on small scales near the sonic length.
6 As has been discussed extensively in the extended Press-Schechter (EPS)
literature, this does introduce some ambiguity in the definition of ‘mass’ in
the mass function, since the real-space window volume is not well defined.
In practice, if we adopt a fixed definition of volume = (4π/3) R3

w, the corre-
sponding systematic differences are relatively small (<10 per cent) between
different window function crossing distributions (see Zentner 2007).
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It should immediately be clear, however, that if we simply extrap-
olated M2 = v2

t /c
2
s ∝ R(p−1)/2, the dispersion would be divergent.

Physically, this would imply ever larger fluctuations in log ρ on
arbitrarily large scales; but this cannot be true once the scale R ap-
proaches that of the entire disc. As kh → 0, the fact that the disc
has finite mass means that σ k → 0. The resolution of this apparent
dilemma is evident in equation (2): what matters in M in the disper-
sion is the effective ‘pressure’ from c2

s ; on sufficiently large scales
kh � 1, the differential rotation κ/k plays an identical physical role.
We can therefore generalize equation (9) as

σk ≈
(

ln

[
1 + 3

4

v2
t (k)

c2
s + κ2 k−2

])1/2

(11)

=
(

ln

[
1 + 3

4

M2(k)

1 + M2
hκ̃

2/|kh|2
])1/2

, (12)

whereMh ≡ σg(h)/cs. This ensures the correct physical behaviour,
σ k → 0 as k → 0 for all plausible turbulent E(k).

At some level, our assumptions must break down. And although
it is well established that the density PDF at the resolution limit
in numerical simulations (in a ‘box-averaged’ sense) approaches
the behaviour of equations (6)–(9), it is less clear whether we can
assume this on a k-by-k basis and so derive equations (10) and
(11). The lognormal character of the density distribution holding on
various smoothing scales as we assume is, however, supported in
the investigations of Lemaster & Stone (2009), Passot & Vazquez-
Semadeni (1998) and Scalo et al. (1998). And any distribution which
is lognormal in either real space or k space must be lognormal in
both. Moreover, the robustness of this assumption is supported by
the conservation of lognormality in resolution studies, since all
simulations essentially measure the PDF smoothed over a window
function corresponding to their resolution limits. To the extent that
there is some violation of these assumptions in e.g. the higher-
order-structure functions (although they are largely consistent with
locality when Mh is large; see Boldyrev, Nordlund & Padoan 2002;
Padoan et al. 2004; Schmidt, Federrath & Klessen 2008), this is
really a question of the degree to which the density PDF globally
departs from a lognormal, which we discuss below.

What is somewhat less clear is how equation (9) general-
izes on a scale-by-scale basis. Analytically, the same arguments
that prove that the density distribution of isothermal turbulence
should converge to a lognormal with real-space variance σ 2 =
ln (1 + (3/4)〈M2〉) trivially generalize to a k-by-k basis (equation 9;
see Passot & Vazquez-Semadeni 1998; Nordlund & Padoan 1999).
If locality also holds, equation (10) must follow. This is the ori-
gin of the expectation for analytic models of the density power
spectrum. Note that, as defined, σ 2

k is equivalent to the logarithmic
density power spectrum, σ 2

k = k Eln ρ(k). When M is not large,
σ 2

k in equation (9) scales ∝ M(k)2 ∝ v2
t ∼ k E(k), so Eln ρ(k) ∝

E(k). This is just the well-known expectation that in the weakly
compressible regime, the log density power spectrum should have
the same shape as the velocity power spectrum. Kowal, Lazarian &
Beresnyak (2007) and Schmidt et al. (2009) show that this is a good
approximation for the ln (ρ) field in simulations of supersonic tur-
bulence. At higher M, this should flatten logarithmically, and this
is seen in numerical simulations in Kowal et al. (2007), in excellent
agreement with equation (9). These behaviours and the approximate
normality of ln (ρ) appear to hold even in simulations which include
explicitly non-local effects such as magnetic fields, self-gravity
(excluding the collapsing regions), radiation pressure, photoioniza-
tion and non-isothermal gas with realistic heating/cooling (see e.g.

Ostriker et al. 1999; Klessen 2000; Lemaster & Stone 2009;
Hopkins et al. 2012).

Even if our analytic derivation is not exact, we can think
of the resulting σ 2(R) and implied log density power spectrum
[Eln ρ(k) ∼ k−1σ 2

k ] as a convenient approximation for the power
spectrum measured in hydrodynamic simulations and observations.
At sufficiently large k, whereM is small, Eln ρ(k) ∝ k−1M2 ∝ k−p;
a steep fall-off with k for typical p ≈ 2; at smaller k (but still smaller
scales than the disc scale-height) M is large and this flattens to
Eln ρ(k) ∝ k−1 lnM2 ∝ k−1 with a small logarithmic correction.
This is exactly the behaviour directly measured in numerical sim-
ulations (Kowal et al. 2007; Schmidt et al. 2009). Qualitatively
similar behaviour is seen in the linear density spectrum, but it is
important to distinguish the two, since it is well known that large
fluctuations at higher M will further flatten the linear spectrum
(see Scalo et al. 1998; Vázquez-Semadeni & Garcı́a 2001; Kim &
Ryu 2005; Kritsuk et al. 2007; Bournaud et al. 2010). It is also
consistent with observations of the projected surface density power
spectrum in local galaxies and star-forming regions (Stanimirovic
et al. 1999; Padoan et al. 2006; Block et al. 2010). If we integrate
to get σ (R), we obtain σ → constant as R → 0, with an absolute
value of σ (R) ≈ 1.25−1.9 dex for a range of p = 5/3−2 and
Mh = 10−50. This range is quite similar to the range measured
in σ (R) on the smallest resolved scales in a wide range of sim-
ulations that have a sufficiently large dynamic range in scales to
probe the typical Mach numbers in GMCs and disc scale-heights
(see Vazquez-Semadeni 1994; Nordlund & Padoan 1999; Ostriker,
Stone & Gammie 2001; Mac Low & Klessen 2004; Slyz et al. 2005;
Hopkins et al. 2012). It also agrees well with measured values of
the dispersion in the real ISM (Wong et al. 2008; Goodman, Pineda
& Schnee 2009a; Federrath et al. 2010).

3 T H E M A S S F U N C T I O N

The question of the mass collapsed on different scales is now a well-
posed barrier crossing problem. The quantity δ(R) – the logarithm
of the density smoothed on the scale R – is distributed as a Gaussian
random field with variance σ 2(R) and zero mean, with a well-defined
barrier

δc(R) ≡ δ(ρc, R) = ln

(
ρc

ρ0

)
−

〈
ln

(
ρ

ρ0

)〉
, (13)

which, upon crossing, leads to collapse. The mass of a col-
lapsed object is simply the integral of the density over the ef-
fective volume of a window of effective radius Rw in real space.
If the medium were infinite and homogenous, this would just be
M(Rw) ≡ (4π/3) ρc(Rw) R3

w; however, we need to account for the
finite vertical thickness of the disc. For the same vertical exponen-
tial profile that gives rise to the dispersion relation in equation (2),
the total mass inside Rw is

M(ρ | Rw)≡4 π ρ(Rw) h3

[
R2

w

2 h2
+

(
1 + Rw

h

)
exp

(
−Rw

h

)
− 1

]
,

(14)

where ρ(Rw) is the midplane density (chosen for consistency with
the dispersion relation). This formula simply interpolates between
M = (4π/3) ρ R3 for R � h and M = π (2ρh) R2 = π 	R2 for
R � h, as it should.

The fraction of the total mass which is in collapsed objects,
averaged over a given smoothing scale Rw, is then just

Fcoll(Rw) = 1

Mtot

∫ ∞

δc

M(ρ | Rw) p(δ | Rw) d δ, (15)
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where ρ(δ) = ρ0 exp (δ − σ [Rw]2/2). Naively, we would equate
this to the mass function of such objects with the relation
Mtot dFcoll/dM = MdN(M)/dM. Indeed, up to a normalization fac-
tor, that is exactly the original approach of Press & Schechter (1974).
However, this neglects the ‘cloud-in-cloud’ problem: namely, it does
not resolve whether or not a collapsed region on a scale R1 is inde-
pendent, or is simply a random subregion of a larger object collapsed
on a scale R0 > R1. For the case of a constant δc, accounting for
this amounts to a simple renormalization; but there is no simple
closed-form analytic solution for the complicated δc here, and we
will show that accounting for this behaviour is critical.

3.1 Exact solution

To derive the exact mass function solution, we turn to the standard
Monte Carlo excursion-set approach. Consider the density field at
some arbitrary location x, smoothed over some window correspond-
ing to the radius R (and mass M) δ(x | Rw). This is the convolution
δ(x | Rw) ≡ ∫

d3x ′ W (|x′ − x|, Rw) δ(x′); so if we Fourier trans-
form, we obtain δ(k | Rw) ≡ W (k | Rw) δ(k). In other words, the
amplitude δ(x | Rw) is simply the integral of the contribution from
all Fourier modes δ(k), weighted by the Fourier-space window func-
tion.

In this sense, we can think of the (statistical) evaluation of the
density field as the results of a ‘random walk’ through Fourier space.
Bond et al. (1991) show that this integration becomes particularly
simple for the case of a Gaussian field with a Fourier-space tophat
window, in which case the probability of a transition from δ1 to δ2

≡ δ1 + �δ as we step from a scale k1 to k2 is given by

p(δ1 + �δ) d�δ = 1√
2π � S

exp

(
− (�δ)2

2�S

)
d(� δ), (16)

�S ≡ S2 − S1 ≡ σ 2(R2) − σ 2(R1), (17)

where we define the variance

S(R) ≡ σ 2(R), (18)

i.e. the increment � δ is a Gaussian random variable with standard
deviation

√
�S.

If we begin on some sufficiently large initial scale k → 0 (R
→ ∞), then the overdensity δ and density variations σ (R) must
go to zero. We then have the well-defined initial conditions for the
walk, δ(Rmax → ∞) = 0, S(Rmax → ∞) = 0. Starting at some
arbitrarily large Rmax, and moving to progressively smaller scales
with increments7 in R or S (� Ri or � Si), we can then compute the
trajectory δ(R) or δ(S),

δ(Ri) ≡
Rj >Ri∑

j

�δj . (19)

At each scale Ri, we then evaluate whether or not the barrier has
been crossed,

δ(Ri) ≥ δc(Ri). (20)

If this is satisfied, we then associate that trajectory with a collapse
on the scale Ri and mass M(ρc[Ri] | Ri) ≡ M(Ri).

7 The walks defined in this way will always converge as �R → 0. In practice,
the value of �R should be sufficiently small to ensure that multiple barrier
crossings are not missed – i.e. so that the probability of crossing the barrier
in a given step is small, �S � δc(R).

Recall, we are sampling the field δ(x | Rw), so the fraction of
trajectories that cross the barrier in some interval �Ri or (equiv-
alently) �M(Ri) represents the probability of a Eulerian volume
element being collapsed on that scale. This corresponds to a differ-
ential mass dfmass = ρ(δ | Rw) dfvol = ρc[Ri] dfVol. Since the total
mass associated with the mass function is Mtot dN(M)/dM, we have
the predicted mass function or ‘first-crossing distribution’:

dn

dM
= ρc(M)

M

df

dM
, (21)

where df /dM is the differential fraction of trajectories that cross δc

between M and M + dM.
This formalism has several advantages. It provides an exact solu-

tion that also allows us to rigorously calculate the normalization and
shape of the mass function. It also allows us to explicitly resolve
the ‘cloud-in-cloud’ problem, i.e. to address the situation where
a trajectory crosses the barrier δc multiple times. Fig. 1 plots the
resulting mass function (for a few choices of parameters, which
just determine the normalization of the mass function and will be
discussed below). We also compare the mass function if we were
to ignore the ‘cloud-in-cloud’ problem – i.e. where we treat every
crossing above ρc on a smoothing scale R as a separate cloud. At the
highest masses, the difference is small – this is because the variance
is small and δc is large, so the probability of being inside a ‘yet
larger’ cloud vanishes. However, at lower masses, the difference
rapidly becomes quite large (order of magnitude) – much larger
than the factor of 2 of the Press–Schechter mass function. This
owes to the complicated behaviour of δc, which increases again
on small scales. Failure to properly account for the cloud-in-cloud
problem and moving barrier will clearly lead to large inaccuracies.

3.2 Key behaviours

If the barrier δc were constant, the mass function of collapsed objects
would then simply follow the Press–Schechter formula

dnPS

dM
= ρ0

M2

√
2

π

δc

σ

∣∣∣∣ d ln σ

d ln M

∣∣∣∣ exp

(
−ν2

2

)
, (22)

where ν ≡ δc/σ (M) is the collapse threshold in units of the stan-
dard deviation [σ (M)] of the smoothed density field on the scale R
corresponding to M(R).

However, the barrier here is not constant (it depends on R). A
reasonable approximation to the first-crossing distribution, however,
is given by

dn

dM
≈ ρc

M2

√
2

π

B̃

σ

∣∣∣∣ d ln σ

d ln M

∣∣∣∣ exp

(
−ν2

2

)
, (23)

B̃ ≡
{

ln (ρc, min/ρ0), M < M(ρc, min),

ln (ρc/ρ0), M ≥ M(ρc, min),
(24)

where ρc, min ≡ MIN(ρc[M]) is the critical density at the most
unstable scale. This is motivated by the exact solution for the first-
crossing distribution for a linear barrier with δc = δ1 + σ 2/2, but
with B̃ = δ1 held constant below M(ρc).8 Because the deviation

8 The fitting function from Sheth & Tormen (2002):

df

dM
dM = f (S) dS = |T (S)| exp [−δc(S)2/2S]

d ln S√
2πS

, (25)

T (S) =
5∑

n=0

(−S)n

n!

∂nδc(S)

∂Sn
(26)
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Figure 1. Predicted and observed (orange) GMC mass functions (MFs).
The generally predicted mass function is dimensionless; we normalize it to
the observed surface density 	gas, gas density (or scale-height) n0, and total
gas mass Mgas. Together with the assumption that Q ∼ 1, this completely
specifies the model. For each case, we show the exact (Monte Carlo) mass
function (solid black), and the mass function if we ignore the ‘cloud-in-
cloud’ problem by counting bound mass on all scales (dotted red); and the
analytic fit to the mass function in equation (23) (dashed blue). Top: Milky
Way. The observed MFs are taken from Williams & McKee (1997) (solid
line) and Rosolowsky (2005) (orange points in each panel), and model nor-
malized to (	gas, n0, Mgas) = (10 M� pc−2, 1 cm−3, 3 × 109 M�). Mid-
dle: LMC. Observed MF from Fukui et al. (2008) (line), normalized to
(8 M� pc−2, 0.8 cm−3, 3 × 108 M�) (see Wong et al. 2009). Bottom: M33.
Normalized to (5 M� pc−2, 1.5 cm−3, 1 × 109 M�) (see Engargiola et al.
2003).

gives a similar answer, but it is less straightforward to interpret. An approx-
imate solution for the case neglecting the cloud-in-cloud problem is given
by

dn

dM
≈ ρc

M2

3√
2πσ

[∣∣∣∣ d ln ρc

d ln M

∣∣∣∣ + ν

∣∣∣∣ dσ

d ln M

∣∣∣∣
]

exp

(
− ν2

2

)
, (27)

which can be derived (up to a normalization) from differentiating equa-
tion (15).

from a constant barrier is only logarithmic, these formulae do not
differ too severely, and we can gain considerable insight from their
functional forms.

Consider the behaviour of both δc and ν, which define three
primary regimes. On scales above the sonic length but below ∼h,
most of the dynamic range for GMCs, M2 ∝ v2

t ∝ Rp−1 (for
power-law turbulent cascades), is large, so σ is a very weak function
of R (most of the contribution comes from the largest scales, since p
− 1 > 0) while ρc decreases with R ∝ Rp−3 so δc = ln ρc/ρ0 → −(3
− p) ln R. Therefore, ν ∝ δc ∝ − (3 − p) ln R ∝ − [(3 − p)/p] ln M
is a (logarithmically) decreasing function of mass. So we expect an
approximately power-law mass function dn/dM ∝ Mα with slope α

∼ −2. This implies similar mass per logarithmic interval in mass
and simply follows from gravity – which is self-similar – being the
dominant force (since the turbulence is supersonic). To the extent
that the slope deviates from −2, it is because the barrier ν gets larger
towards lower M. From the above equation, M−2 exp (−ν2/2) ∝
M−2 exp [−(3 − p)2 [ln (M/M0)]2 /2p2σ 2] ∝ Mα with

α ≈ −2 + ln (M0/M) (3 − p)2/2p2σ 2, (28)

≈ −2 + 0.1 log (M0/M) (29)

[where M0 is approximately the location of the mass function
‘break’; formally (4π/3)ρ0 h3 ≈ 106 M� for Milky Way (MW)-
like systems]. In other words, we expect a slope α which is shal-
lower than −2 by a small logarithmic correction, α ∼ 1.7−1.9, as
observed.

At very small scales we approach the sonic length, M → 1; the
growth in σ (R) becomes vanishingly small (∼√

3M/4 ∝ R(p−1)/2)
while ρc continues to increase logarithmically as before. The mass
function must therefore flatten or turn over, with a rapidly decreasing
mass in clouds below the sonic length (although the absolute number
may still rise weakly).

At large scales above ∼h, σ (R) decreases rapidly with
increasing R – the contribution from large scales goes as
∼

√
ln (1 + (3/4) v2

t /κ
2 R2) ∝ R−4+p as R → ∞, while now ρc

also increases ∝ R (so δc ∝ ln R), so the mass function is exponen-
tially cut off as ∝ exp ( − cM1−p/4). We caution that at the largest
size/mass scales, global gradients in galaxy properties – which are
currently neglected in our derivation of the collapse criterion – may
become significant. However, the number of clouds in this limit is
small.

3.3 Comparison with observations

Fig. 1 plots the predicted mass function: we show the exact solution,
both excluding and including ‘clouds in clouds’, and the approxi-
mations in equations (23) and (27). For our ‘standard’ model, we
will assume that the disc is marginally stable [Q0(h) = 1], and that
the turbulence, being supersonic and rapidly cooling, should have p
≈ 2 (see the discussion in Section 1). Motivated by observations, we
normalize the turbulent spectrum by assuming a Mach number on
large scales Mh ≈ 30 (though we will show that this exact choice
has very weak effects, provided Mh � 1). With these choices, the
model is completely fixed in dimensionless terms. To predict an
absolute number and mass scale of the mass function, we require
some normalization for the galaxy properties: some measure of the
local gas properties (mean density, velocity dispersion, surface den-
sity etc., to set the mass and spatial scales) and total galaxy mass
or size (to know the gas mass available). Because of our assump-
tion of marginal stability, many of these properties are implicitly

C© 2012 The Author, MNRAS 423, 2016–2036
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



ISM structure and growth histories 2023

related – we need only specify e.g. a total disc mass, gas fraction
and spatial size. Or, equivalently, a mean density, velocity dispersion
and total mass.

Taking typical observed values for the total gas mass, mean den-
sity and velocity dispersion in the MW, we plot the resulting pre-
dicted GMC mass function and compare to that observed. Because
we are considering the total gas mass of the inner MW, we need
to compare with a GMC mass function corrected to the same ef-
fective volume – we therefore compare with the values in Williams
& McKee (1997) (who attempt to construct a ‘galaxy-wide’ GMC
mass function for the same total volume). We then repeat the exper-
iment with the average properties observed in the Large Magellanic
Cloud (LMC) and M33, and compare with the mass function com-
pilations in Rosolowsky (2005) and Fukui et al. (2008), corrected
to the appropriate survey area.

In each case, the predicted mass functions agree remarkably
well with the observations. We emphasize that although the ob-
served densities and masses enter into the normalization of the
mass function, the shape, which agrees extremely well, is en-
tirely an a priori prediction. Moreover, the assumed densities do
not entirely determine the normalization – because the barrier and
variance are finite at all radii, the models here specifically predict
that not all mass is in bound units. In fact, only ∼20–30 per cent
of the total mass is predicted to be in such units – for the MW,
the total bound GMC mass is predicted to be ≈109 M�, in good
agreement with that observed (Williams & McKee 1997). Like-
wise, the details of our stability and collapse conditions determine
where, relative to the Jeans mass, the ‘break’ in the mass function
occurs.9

We should caution that it is not entirely obvious that our pre-
dicted mass function is the same as that observed. The mass func-
tion here is well defined because we restrict to self-gravitating ob-
jects and resolve the cloud-in-cloud problem, knowing the three-
dimensional field behaviour (and assuming spherical collapse). In
the observations, the methods used to distinguish substructures and
the choice of how to average densities (in spherical or arbitrar-
ily shaped apertures) can make non-trivial differences to the mass
function (Pineda, Rosolowsky & Goodman 2009). This may be
considerably improved by the use of more sophisticated obser-
vational techniques that attempt to statistically identify only self-
gravitating structures (see e.g. Rosolowsky et al. 2008); preliminary
comparison of these methods in hydrodynamic simulations and ob-
servations suggests that most of the identified GMCs are indeed
self-gravitating structures, so the key characteristics of the GMC
mass functions in our comparison should be robust, although de-
tails of individual clouds may change significantly (Goodman et al.
2009b).

3.4 Effects of varying assumptions

Of course, it is important to check how sensitive the predicted mass
functions are to the assumptions in our model. Fig. 2 shows the

9 The predicted high-mass cut-off in the GMC mass function is steep, but
there is some suggestion that the GMC mass function terminates or truncates
more sharply at the maximum cloud mass in some systems (e.g. the MW;
see Williams & McKee 1997). As noted above, including the corrections
from global gradients in galactic properties in our collapse condition may
steepen the predicted cut-off. However, since the distinctions appear over a
narrow range in mass (a factor of <2) where the expected number of clouds
is in the Poisson regime (and consistent with zero within 2σ ), it is difficult
to discriminate between different models.

Figure 2. Variation in the predicted GMC mass function with model as-
sumptions. The MFs are plotted in dimensionless units. We compare the
standard model (from Fig. 1), which assumes a turbulent spectral index of
p = 2, and Mach number at scale ∼h ofMh = 30. Assuming p = 5/3 instead
slightly flattens the slope at intermediate masses. Changing Mh = 10, 1000
increases/decreases the sonic length, below which the MF flattens, but near
the MF break, the assumption of Q ∼ 1 means that Mh factors out. Re-
moving the assumed cut-off in the turbulent power spectrum at scales �h
makes the cut-off in the MF shallower at large masses. Using a Gaussian
window function to smooth the density field (instead of the usual k-space
tophat) makes the MF slightly more shallow, because for the same window
volume (same mass definition), the radii which contribute fluctuations are
shifted. In all these models, the density PDF is assumed to be lognormal; if
we instead assume that it is a pure power-law distribution (equation 32), but
assume the same variance in ln ρ, the result is nearly identical. In all cases,
the variations in the MF are very small – the marginal stability assumption
and weak (logarithmic) running of density variance with scale mean that the
MF shape is largely independent of even substantial model assumptions.

results of varying these assumptions. We plot the mass function in
dimensionless units (ρ0 = h = 1, with the absolute mass being an
arbitrary normalization).

If we assume Kolmogorov turbulence (p = 5/3 instead of p = 2),
the predicted mass function is nearly identical at intermediate and
high masses, but flattens more rapidly at low masses, because the
velocity drops more slowly at small scales so ρc ∝ Rp−3 rises more
steeply. The difference agrees well with the scaling in equation (28),
which predicts a faint-end slope α ≈ −2 + 0.3 log (M0/M) for p =
5/3 instead of α ≈ −2 + 0.1 log (M0/M) for p = 2.

If we vary the Mach number on large scalesMh (or, equivalently,
the assumed sound speed or magnetic field strength), the differences
are very small at almost all masses, because the assumption that the
disc as a whole is marginally stable effectively scales out the abso-
lute value of Mh. What Mh does determine is the (dimensionless)
scale of the sonic length (Rsonic ∼ hM−2/(p−1)

h ), below which the
mass function will flatten. With lower Mh = 10, this happens at
higher masses – but still quite low in absolute terms (R ∼ 0.01 h, or
� 3 dex below the maximum GMC masses).

As noted above, the exact manner in which the velocity power
spectrum E(k) should flatten at large scales kh � 1 is uncertain.
We therefore recalculate the mass function ignoring such flattening
entirely – i.e. assuming E(k) ∝ k−p for all k. This makes the very
high-mass end of the mass function slightly more shallow, but has
a negligible effect at all other masses. Since the only difference
will be in the regime where the number of clouds is ∼1 (so subject
to large Poisson fluctuations), it is difficult to constrain this from
observations.
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Recalculating our results with a different window function makes
little difference. We test this with a Gaussian window function
(convenient as it remains a Gaussian in real and Fourier space).
As discussed in Zentner (2007), this makes the calculation more
complex because we can no longer treat the Fourier-space trajec-
tory as having uncorrelated steps; following Bond et al. (1991) the
first-crossing distribution is computed by numerically integrating
a Langevin equation. However, we hold our mass definition fixed;
with this choice, for fixed Rw, the exact choice of window shape
about kw ∼ 1/Rw introduces only small (∼10 per cent) corrections
(we refer to the discussion therein and Maggiore & Riotto 2010a for
more detailed discussion of the effects of different window func-
tions).

What if the density distribution is not a lognormal? It has been
suggested, for example, that for systems which have significant
gas pressure and whose equations of state are non-isothermal, or
which have large magnetic fields, the density distribution may more
closely resemble a power law (see e.g. Passot & Vazquez-Semadeni
1998; Scalo et al. 1998; Ballesteros-Paredes et al. 2011b). This is
certainly still treatable with the excursion-set formalism: there has
been considerable discussion in the literature regarding the halo
mass function and bias with non-Gaussian primordial fluctuations
(see Matarrese, Verde & Jimenez 2000; Afshordi & Tolley 2008;
Maggiore & Riotto 2010b, and references therein). However, most
of these rigorous approaches assume that the non-Gaussianity is
small and can be treated in perturbation theory. For large devia-
tions from Gaussianity it is not trivial to construct a fully self-
consistent theory. For example, if P(ρ | Rw) were locally power
law at each ‘step’ in k-space in a random walk, the resulting P(ρ)
evaluated on each scale would no longer be a power law; some
violation of locality would be required so that the distribution could
‘self-correct’. In any case, if we simply assume some prespeci-
fied P(ρ | Rw) at all scales, it is still straightforward to evaluate the
first-crossing distribution. The distribution f (S) in (df /dM) dM =
f (S) dS is given by the solution to the integro-differential
equation:

f (S) = −P ′(δc | S)
dδc(S)

dS
−

∫ δc(S)

−∞

∂P ′(δ | S)

∂S
dδ, (30)

P ′(δ | S) ≡ P (δ | S) −
∫ S

0
dS ′ f (S ′) P (δ − δc[S ′] | S − S ′), (31)

where dp(δ) = P(δ) dδ. This is essentially just the collapsed mass
given by P(δ > δc | S), corrected by the probability that the collapse
occurred on a larger scale (smaller S), and can be solved numerically
for any specified P.

Consider the following form for the density PDF:

dp(ρ)

d ln ρ
∝ exp (−γ | ln [ρ/ρ̄]|) =

{
(ρ/ρ̄)γ , ρ < ρ̄,

(ρ/ρ̄)−γ , ρ ≥ ρ̄,
(32)

where ρ̄ = (1 − γ −2) ρ0. The exact functional form is arbitrary, of
course, but convenient because it is a pure power-law symmetric in
ln ρ, and has a well-defined variance: 〈(ln ρ)2〉 = 2γ −2 + (ln [1 −
γ −2])2. We can therefore map this one to one to our assumed den-
sity power spectrum by assuming γ = γ (R), with 2γ −2 + (ln [1 −
γ −2])2 = σ 2(R) = S. Note that this gives γ ∼ 1 over much of the dy-
namic range of interest, quite similar to the best-fitting distributions
in the references above. At low and high masses, the predicted mass
function is slightly more shallow than our standard model. At high
masses this is because of the more extended power-law tail to high
δ; at low masses this is both an effect of more first crossings at larger

scales and a result of some of the mass being moved from the ‘core’
of the distribution to those tails. However, the differences are quite
small. This is because a lognormal (unlike a pure normal distribu-
tion) is very similar to a single power law over a wide dynamic range.
Moreover, the collapsed mass fraction is not extremely small, so it is
not sampling some extreme tail of the distribution. So, for the same
variance S, deviations from lognormal behaviour have only small
effects.

3.5 The core mass function

In this paper, we choose to focus on the mass function of GMCs and
other large-scale structures in the ISM. Part of the reason for this is
that we can focus on the first-crossing distribution (the largest scales
on which structures are self-gravitating) and so have a well-defined
mass function. Although there are certain similarities, this is not
the same as the mass function of self-gravitating dense cores within
GMCs, as calculated using qualitatively similar arguments in e.g.
Padoan & Nordlund (2002) and Hennebelle & Chabrier (2008).

In principle, our model can be extended iteratively to smaller
scales to investigate the mass function of cores and make a direct
comparison with these previous predictions as well as observations,
and in companion papers (Hopkins 2012a,b) we attempt to do so.
This is not trivial, however. The difficulty is that, because cores
are substructures, the mass function definition (the resolution to
the ‘cloud-in-cloud’ problem) is somewhat ambiguous: we cannot
simply isolate first crossing. Even in simulations where the full
three-dimensional properties are known, it is not trivial to find a
unique mass function of such substructure in a turbulent medium
(see e.g. Ballesteros-Paredes et al. 2006; Anathpindika 2011). The
approach of Hennebelle & Chabrier (2008) is to treat this ambiguity
as an effective normalization term (and to truncate the problem at
larger scales – treating the properties of the ‘parent’ GMC as as-
sumed/given and restricting to much smaller spatial scales); as such
their derivation is similar to the original Press & Schechter (1974)
derivation as discussed in Section 1. The approach in Padoan &
Nordlund 2002 more simply makes some general scaling argu-
ments. But as we show in Fig. 1, this is not necessarily a good
approximation. We therefore require some more detailed criteria to
inform our definition of cores, for example some estimate of the
scales on which fragmentation below the core scale will not occur
(defining the ‘last-crossing’, as opposed to ‘first-crossing’ distribu-
tion). This is a topic of considerable interest, but is outside the scope
of our comparisons here.

4 SI ZE–MASS AND LI NEWI DTH– SI ZE
R E L AT I O N S

We can also use our model to predict the scaling laws obeyed by
GMCs ‘at collapse’.

The linewidth–size relation follows trivially from our assumed
turbulent power spectrum. The exact σ v(R) relation is plotted in
Fig. 3 for power-law turbulent slopes of p = 5/3 and p = 2, with
the normalization set by requiring a marginally stable disc with
MW-like surface density. We can define the linewidth either as just
the turbulent width or the turbulent width plus the contribution
from disc shear σ 2

v (R) = v2
t + κ2 R2; the distinction is unimportant

for typical observed scales, but shear is predicted to contribute
significantly to the velocities of the largest GMCs when R � h.
We compare with observations compiled from the MW and other
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Figure 3. Predicted GMC linewidth–size relation. Different lines corre-
spond to different model assumptions: specifically we vary the turbulent
spectral index (p), the absolute normalization of the system (amounting to
the velocity dispersion σ 2

h at scale = h), and whether or not we include
disc shear in the ‘velocity’ σ v. Note that in the models here, σ h is not
freely varied, and is predicted from the global parameters of the system via
our marginal stability assumption. The velocity σ v is the one-dimensional
linewidth (using σ 2 = c2

s + v2
t ) for each cloud at the time of collapse, R is

the three-dimensional collapse radius. On scales below ∼h, the Monte Carlo
results are approximately a power law with slope σ v ∝ R0.5 (equation 33).
We compare observations of clouds in the MW and local galaxies, compiled
in Bolatto et al. (2008, circles) and Heyer et al. (2009, squares), appropri-
ately corrected to the same quantities. The agreement is good – even for
p = 5/3, for which large-scale effects make the relation slightly steeper than
the naive expectation σ v ∝ R(p−1)/2; moreover, the marginal stability as-
sumption predicts the normalization accurately. We also compare individual
high-redshift molecular ‘clumps’ in extremely gas-rich, rapidly star-forming
lensed galaxies in Swinbank et al. (2011, crosses with error bars), which
form in much more dense discs (much larger 	disc); these lie well above
the extrapolation of the relation for MW-like properties. However, if we
compare the predictions for a model with the observed σ h ≈ 100 km s−1

of their host discs, the agreement is good. Clouds in the MW centre, which
has intermediate 	disc between these extremes, lie correspondingly between
these curves (see Oka et al. 2001).

Local Group galaxies from Bolatto et al. (2008) and Heyer et al.
(2009).10

In the regime above the sonic length and below the scale-height,
this is just a simple power law with σ v(R) ∝ R(p−1)/2, i.e. ≈0.5 for
p = 2 or ≈0.33 for p = 5/3. This is essentially an assumption of our
model (although it follows from basic turbulent conditions); a more
interesting fact is that the normalization can be predicted from the
assumption of marginal stability (Q ≈ 1), giving

σv(R) ≈ 0.4 km s−1

( 〈	disc〉
10 M� pc−2

)0.5(
R

pc

)0.5

. (33)

This agrees well with the observed relation. In the full solution,
because of the change in dimensionality above the scale h, the rela-
tionship flattens if we consider only turbulent velocities; it becomes
steeper, however, with the inclusion of the shear term.

10 Because Heyer et al. (2009) caution that more detailed studies in nearby
clouds (e.g. Goldsmith et al. 2008) suggest their local thermodynamic equi-
librium (LTE) masses may be low by a factor of ∼2−3 at intermediate
column densities, we plot the results for the ‘high density’ cuts in the cloud
area defined therein (the ‘A2’ sample) within which the LTE approximation
should be valid.

This model also specifically predicts a residual dependence in the
normalization of the linewidth–size relation that scales as 〈	disc〉1/2,
where 〈	disc〉 is the large-scale mean disc surface density. We stress
that this is not necessarily the same as a dependence on the lo-
cal cloud 	cloud (over a wide dynamic range, in fact, 	disc, hence
	cloud, is similar). This is also, by definition, for bound objects, not
for un-bound overdensities on small scales. The predicted depen-
dence is shown indirectly in Fig. 3, and directly in Fig. 5, where
we compare with the observations compiled in Heyer et al. (2009)
in local galaxies and in Swinbank et al. (2011) for massive star-
forming molecular complexes in lensed, high-redshift galaxies.
These sample extremely different environments are indeed offset
in the linewidth–size relation. However, the magnitude of their off-
sets is in good agreement with that predicted here.11 The galax-
ies in Swinbank et al. (2011) have an average surface density of
∼103 M� pc−2, and a correspondingly very large measured σ h ≈
100 km s−1 [as expected for Q0(h) ≈ 1]; normalizing the predicted
linewidth–size relation for these properties, we expect an order of
magnitude larger σ v at fixed size. Clouds observed in the MW cen-
tre (Oka et al. 2001), which has a higher mean surface density than
the local neighbourhood but generally lower than estimated for the
high-redshift systems, lie neatly between the predicted curves for
the local and high-redshift cases (a mean offset of ∼3−5 relative
to the local clouds, corresponding to a factor of ∼10−30 higher
	disc, about what is expected for the observed exponential profile).
Similar offsets are known in other local galaxies with high surface
densities, such as mergers and starburst galaxies (Wilson et al. 2003;
Rosolowsky & Blitz 2005).

As discussed in Hopkins et al. 2012, a dependence of exactly this
sort is seen in high-resolution hydrodynamic simulations as well.
In the observations, this normalization dependence has sometimes
been interpreted as a consequence of magnetic support or confining
external pressure (see the discussion in Blitz & Rosolowsky 2006;
Bolatto et al. 2008; Heyer et al. 2009), but in this context magnetic
fields and pressure confinement are not explicitly present – such
a scaling is a much more broad consequence of the simple Jeans
requirements for collapse in any marginally stable environment.

The size–mass relation follows from the critical density ρc de-
rived in Section 2.1, by simply inverting equation (14). We plot
the exact prediction in Fig. 4. In the regime above the sonic length
but below the disc scale-height, recall that a power-law turbulent
cascade gives the simple condition ρc = k2 vt(k)2/(4πG) ∝ Rp−3,
so R ∝ M1/p, i.e. R ∝ M1/2 for p ≈ 2, very similar to the observed
power-law scaling. The normalization also follows – for MW-like
global conditions

Rcloud(R � �sonic, R � h) ≈ 1.4σ−1
0.4 pc

(
Mcloud

300 M�

)0.5

, (34)

where σ 0.4 is the normalization of the turbulent velocities vt =
σ 0.4 × 0.4 km s−1 (R/pc)1/2. This corresponds to an approximately
constant cloud surface density in agreement with Larson’s laws: in
projection 	cloud ≈ 100 M� pc−2 at the time of collapse. Note that
recalculating this for p = 5/3 only changes the slope from 0.5 to 0.6,
which is well within the observational uncertainty. This will also
alter behaviour at the highest masses, but this is not significant until

11 If the predicted clouds perfectly followed M ∝ R2 and σ ∝ R1/2, they
would collapse to a single point in this figure. They do not, because of the
changes below the sonic length and above ∼h. However, because the clouds
are defined as self-gravitating, the models collapse to a line (with most of
the clouds concentrated near the ‘typical’ point for intermediate scales.
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Figure 4. Size–mass relation of clouds, in the same style as in Fig. 3.
The observations from Bolatto et al. (2008) use the virial mass estimator
Mvir ≡ 5 σ 2

v R/G, and those from Heyer et al. (2009) and Swinbank et al.
(2011) are derived from the CO luminosity. The agreement with observations
is good, and the scaling is an approximate power law with slope R ∝ M0.5

(approximately constant 	cloud ∼ 100 M� pc−2; equation 34). Again, the
high-redshift clumps lie off the ‘typical’ local galaxy relations; however, a
model of a more dense disc with σ h ≈ 100 agrees well. Similarly, MW-centre
clumps lie between the extremes shown (Oka et al. 2001).

well above the mass function break. There does however appear
to be tentative evidence for such a transition in the observations
shown in Fig. 4. As expected from the behaviour of the linewidth–
size relation, clouds in high density environments – which will have
a higher σ 0.4 in equation (34) above – are offset to lower R at fixed
Mcloud; we show the same model prediction for the high-redshift
systems in good agreement with the observations. Once again, MW
centre clouds and other local systems in environments with higher
densities are similarly offset.

As discussed in Section 3.5, fully extending the models here to the
scales of dense cores is beyond the scope of this paper. However,
we expect these cores, if self-gravitating, to obey the scaling in
Fig. 5. This means that if they form inside of high-density GMCs,
we can (approximately) think of the ‘parent’ GMC surface density
as similar to the background 〈	disc〉 term in equation (33), and might
expect them to have higher dispersions at fixed sizes. This has been
suggested from observations (Ballesteros-Paredes et al. 2011a), as
part of a quasi-hierarchical gravitational collapse, similar to the
predictions here. Of course, some regions can have much higher σ v

at fixed R and be simply not self-gravitating; these will not lie on the
relation in Fig. 5 (they will be offset to higher σ v/R1/2). This may,
in turn, give rise to a dependence of the linewidth–size relation on
the tracers and extinction threshold adopted, as observed (Goodman
et al. 1998; Lombardi, Alves & Lada 2010).

5 SPATIAL CLUSTERING O F G MC S

In analogy to dark matter haloes, we can use the excursion-set
formalism to also determine the spatial clustering and correlation
function strength of these bound sub-units. Following Mo & White
(1996), the excess abundance of collapsing objects (relative to the
mean abundance) in a sphere of radius R0 with mean density δ0 is

δcoll(R1, δc, 1 | R0, δ0) ≡ N (1|0)

n(M1) V0
− 1, (35)

Figure 5. Residuals from the linewidth–size relation for bound clouds as a
function of disc/region surface density 	, in the style of Fig. 3. Because we
define clouds as self-gravitating, the different predicted lines (from different
turbulent spectra) in Figs 3–4 collapse to a single line in this plot. So we
instead plot the predicted lines for an assumed global stability parameter Q0

≈ 0.5–2.0. Unbound clouds/overdensities will have higher σ v, but are not
the collapsed objects followed here.

where n(M1) is the average abundance of objects of mass M1 (from
the mass function) and N (1|0) is the number of collapsing objects
in a region of radius R0 (variance S0) with fixed overdensity δ0.

5.1 Linear bias

If δc were constant, N (1|0) can be determined analytically and is
simply

N (1|0) = ρc, 1 V0

M1

δc, 1 − δ0√
2π (S1 − S0)3/2

exp

[
− (δc, 1 − δ0)2

2 (S1 − S0)

]
d S1

dM1

(36)

(Bond et al. 1991). In the regime where R0 � R1, so �0 � �1, this
simplifies to

δcoll ≈
(

ν2
1 − 1

δc, 1

)
δ0 = b(M1) δ0, (37)

where b(M1) is defined as the linear bias of objects of mass M1.12

The barrier δc here is not constant. However, for arbitrary δc(M),
we can calculate N (1|0) exactly by repeating our Monte Carlo
excursion from Section 3.1, but instead of beginning with initial
conditions S = 0, δ = 0 for each walk, we begin at scale S = S0

with density δ = δ0. The bias b(M1) is then just the ratio of δcoll/δ0

for small δ0.
Fig. 6 plots the bias as a function of cloud mass. A couple of key

properties are clear. At high masses above the exponential cut-off
in the mass function, the bias increases rapidly. This is qualitatively
similar to what is seen for dark matter haloes: because such sys-
tems are exponentially rare, they will tend to be strongly biased
towards the few regions with substantial large-scale overdensities.
Physically, this corresponds to gas overdensities in the disc on scales

12 The expression for bias here is different from that for dark matter haloes
by a linear offset of unity. That offset arises in the dark matter case because
of the expansion of the Universe and subsequent mapping from ‘initial’
(Lagrangian) coordinates to ‘observed’ (Eulerian) coordinates. It does not
appear here because the terms are all evaluated instantaneously (the expres-
sion here is equivalent to the ‘initial time’ expression for b in haloes).
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Figure 6. Predicted linear bias b – i.e. the amplitude of spatial clustering – as
a function of GMC mass (allowing for clouds inside of bound overdensities).
We plot this for our standard model and model variations in Fig. 2, in
dimensionless units. Low-mass GMCs are weakly biased or anti-biased
– they simply trace the dense gas. The highest mass GMCs are strongly
clustered – they preferentially trace global overdensities (e.g. spiral arms
and galaxy nuclei).

larger than the scale-height h, i.e. a preferential concentration of the
most massive GMCs in global instabilities such as spiral arms, bars
and ∼kpc-scale massive star-forming complexes, rather than their
being randomly distributed across the gas. At intermediate masses
below the mass function break, where most of the cloud mass lies,
the bias is weak (of the order of unity), so most of the mass in clouds
simply traces most of the gas mass in general. We stress that this
does not necessarily mean clouds are randomly distributed over the
disc as a whole; it means they are unbiased relative to the gas mass
distribution. But at low masses, the bias again rises (weakly). This
is related to the anti-hierarchical nature of cloud formation: the bias
here is driven by clouds which form via fragmentation from other
clouds.

We can approximate these exact results using our previous ap-
proximate fitting functions for the mass function (equations 23 and
27) modified (as with the case of a linear barrier) so S → S1 −
S0 and ν2 → (δc − δ0)2/(S1 − S0). Neglecting the cloud-in-cloud
problem (i.e. including those clouds), we obtain the approximate

bcic(M1) ≈ ν2
1 − 1 + ν1 d ln ρ1/dσ1

δc, 1 (1 + ν−1
1 d ln ρ1/dσ1)

, (38)

which in practice is a small (∼10–20 per cent) correction to equa-
tion (37). If we exclude cloud-in-cloud,

b(M1) ≈ 1

δc, 1

[
ν2

1 − δc, 1

B̃

]
(39)

(where B̃ is defined in equation 23). This is identical to equa-
tion (37) at high masses, but it allows for negative bias at low
masses, if Bmin ≡ ln (ρc, min/ρ0) < 2 and δc < σ 2 (B−1

min − 1/2).
Physically, the fact that equation (38) is always positive means that
the number of bound regions of mass M1 inside a large-scale over-
density always increases with δ0. However, for some values of M1

and δ0, increasing δ0 more rapidly increases the probability that
these regions are themselves inside a larger collapsed region. For
a more detailed discussion of the leading-order corrections when
considering a moving as opposed to constant barrier δc, we refer to
Sheth, Mo & Tormen (2001).

5.2 The correlation function: theory

Recall that the physical overdensity is ρ/ρ0 = exp [δ − σ (R)2/2].
The correlation function ξ cm between collapsed objects of mass M1

and background mass, as a function of radius R0, is defined by

1 + ξcm(R0, M1) ≡ 〈N (1 | R0) | ρ〉
n(M1) V0 ρ0

(40)

= 〈(1 + δcoll) | exp (δ0 − S[R0]/2)〉R0 (41)

=
∫ N (1|0)

n(M1) V0
e(δ0−S0/2) q(δ0 | S0) dδ0, (42)

where the integral is over all δ0 <δc(R0), and q(δ0 | S0) is a weighting
factor defined in Bond et al. (1991) as the probability that the
overdensity at a random point, smoothed on a scale R0, is δ0 and
does not exceed δc(R0) on any larger smoothing scale.13

Equation (42) can be evaluated numerically with the Monte Carlo
solution for N (1|0) and q(δ0 | S0). But, at large R0 � R1 (provided
S0 → 0 as R → ∞), it simplifies to just

1 + ξcm(R0, M1) ≈ 1 + b(M1) σ 2(R0) (R0 � R1) (43)

= 1 + b(M1) ξmm(R0). (44)

This can be shown for any first-crossing distribution by first tak-
ing q → p(δ0 | S0) since the probability of collapse on larger
scales is negligible, and then noting exp (δ0 − S0/2) p(δ0 | S0) =
1/

√
2π S0 exp [−(δ0 − S0)2/2 S0], which becomes a delta function

centred at δ0 = S0 as S0 → 0.
The autocorrelation function of the mass ξmm is given by 1 +

ξmm ≡ 〈ρ2〉/ρ2
0 = exp (S0), so ξmm = exp (S0) − 1 ≈ S0 = σ 2(R0)

at large R0 is just the variance in the mass field. So the collapsed
object–mass correlation function on large scales is then just the
bias times the mass autocorrelation function. It is straightforward to
verify that the autocorrelation function of collapsed objects is just
given by

ξcc ≈ b2(M1) ξmm (R0 � R1). (45)

The correlation functions discussed above are the three-dimensional
correlation functions. However, with rare exceptions, it is in general
much easier to determine the projected correlation function ξ2d(Rp),
defined so that the probability of finding another object in a two-
dimensional annulus d2r around a given object is 〈dN/dA〉 (1 +
ξ2d ) d2r . This is straightforward to calculate

wp ≡ ξ2d(Rp) =
∫ ∞

−∞ n0(z) ξ3d

(√
R2

p + z2
)

dz∫ ∞
−∞ n0(z) dz

, (46)

where z is the line-of-sight direction and n0(z) = n(M) is the av-
erage abundance. For the typical case of an approximately face-on
disc with the exponential vertical profile we have adopted, n0(z) ∝
exp (−z/h); however, accounting for this, we should also slightly
modify our calculation of ξ3d, integrating over ρ0 at all central po-
sitions with N (1 | 0 | x) a function of ρ0(x) (since our derivation
up to this point implicitly assumed a homogeneous background). In
either case, at large radii this is just wp ∝ (R/h) ξ 3d.

13 Note that the equations here are modified from those used in the cos-
mological case because we use δ to represent the logarithmic (not linear)
density field. However, for small δ0 they are identical, which is why we
recover similar scalings for the bias and correlation functions.
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5.3 Observed GMC and star cluster correlation functions

In Fig. 7, we compare the predicted (two-dimensional) correla-
tion functions to observations. Unfortunately, at present there are
no published observations of the GMC–GMC correlation function.
However, various groups have measured the correlation functions
of young, massive star clusters in nearby systems. Statistically, the
positions of such star clusters should trace those of their ‘parent’
GMCs (with greater fidelity as we consider younger star clusters).
And although clusters will disperse or be destroyed with time, the

Figure 7. Comparison of the predicted correlation function ξ (R) of bound
gas objects/GMCs (lines) with the observed correlation functions of young
star clusters. We show the predicted values for three different masses (essen-
tially a normalization difference in the correlation function, corresponding
to the bias b in Fig. 6). For lower masses, b changes weakly, and for higher
masses the MF is exponentially suppressed, so this covers the interesting
range. We plot radii in units of the scale-height h, in which the correlation
function is dimensionless. Top: ξ cm, the cross-correlation between bound
objects and gas mass (defined in equation 40). We compare the observed
cross-correlation between young star clusters (which should trace the loca-
tions – regardless of how efficiently they form – of their ‘parent’ GMCs)
and CO gas maps measured in the Antennae by Zhang, Fall & Whitmore
(2001). We compare the two youngest ∼100 cluster samples (sampling two
different regions and mass ranges), with ages �5 Myr and ∼3–16 Myr. We
do not know the masses of the progenitor GMCs, but they are likely to be
in this range, since these are the most massive young star clusters in the
galaxy (the more massive sample has the higher |ξ cm|). Despite this being
a disturbed system, the agreement is reasonable. Bottom: ξmm, the auto-
correlation function of bound objects. We again compare this measured for
the young star clusters in the Antennae (orange circles). We also compare
the young ∼1000 star cluster autocorrelation function in M51 (which is not
disturbed), measured by Scheepmaker et al. (2009) for age intervals 2.5–10,
10–30 and 30–300 Myr (red, cyan and green, respectively). Especially in
the youngest samples, the agreement is good. We compare the same, mea-
sured directly for GMCs with mass ∼2 	g h2 in M33 from Engargiola et al.
(2003); again the agreement is good.

correlation function should not be affected so long as this ‘infant
mortality’ is not strongly position-dependent (though that is uncer-
tain, if it depends on e.g. tidal fields). This also has the advantage
that star clusters can be much longer-lived than GMCs, so allow
better statistics. The major uncertainty is that, without knowing the
(uncertain) star formation efficiency, the exact mass of the progen-
itor GMCs is undetermined. However, since the observed systems
sample the brightest clusters, we can safely assume that their pro-
genitors were the most massive GMCs (and since the mass func-
tion cuts off exponentially, should reflect masses ∼1−10 times the
‘break’ in the mass function).

Scheepmaker et al. (2009) measure the star cluster–star cluster
autocorrelation function (which we should compare to the GMC
autocorrelation ξ cc) in M51 for the brightest ∼1000 star clusters,
in three age intervals (2.5−10, 10−30 and 30−300 Myr). The clus-
ter masses range from 103.5 to 105 M�, which for a few per cent
star formation efficiency indeed corresponds to the most massive
GMCs. The mass scale only affects the bias (normalization) – it is
more important to compare the shape of ξ cc – this is invariant in units
of R/h. With a large number of clusters and a nearly face-on projec-
tion, this is the most robust probe over large dynamic range. Zhang
et al. (2001) measure in the Antennae the star cluster–star cluster
autocorrelation function and the star cluster–gas cross-correlation
function (tracing the gas in CO maps, which – since the system
is quite dense – account for most of the gas mass). Here the ge-
ometry is obviously much more complex, so the results should be
interpreted with additional caution, but the authors do attempt to ac-
count for the global structure of the system, and separately measure
the correlation functions in different regions. We specifically con-
sider their youngest cluster samples (R and B1), with the brightest
∼100 and ∼1000 objects at ages � 5 Myr and ∼3−16 Myr, respec-
tively (masses ∼104–106 M�). Finally, we attempt to follow the
procedure in Scheepmaker et al. (2009) to construct the autocorre-
lation function for GMCs in M33, using the catalogue in Engargiola
et al. (2003), which is both face on and has a well-defined survey
area and completeness limit. Since we cannot properly account for
survey edge effects or the global density profile, we simply truncate
the correlation function at half the radius inside of which 75 per
cent of the identified GMCs are found. Here, we can determine the
mean mass in the distribution, which is approximately ∼2 	h h2

estimated using the parameters from Fig. 1 – this is almost exactly
the value in the model which gives the best-fitting predicted nor-
malization of ξ (R). Given the uncertainties in both observations and
the cluster–GMC mapping, the agreement is striking.

6 T H E D I S T R I BU T I O N O F U N D E R D E N S E
BU BBLES

Just as we used the excursion-set formalism to predict the mass
function of clouds by identifying objects above a critical overdensity
δc, we can also use it to predict the abundance of underdense regions
(‘bubbles’) by identifying regions below a critical underdensity δb.
We will follow Sheth & van de Weygaert (2004), who apply this
formalism to the dark matter halo context to study the distribution
of voids.

Generally, the procedure is the same, but considering the
mass/radii below δb instead of above δc. However, some additional
complications arise. First, unlike the case of collapsing objects
where the counting of ‘clouds in clouds’ was potentially valid,
here we should clearly count ‘voids in voids’ as simply part of the
larger, parent void/bubble. So we again need to specify to the first-
crossing distribution (the distribution of the largest radii on which
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trajectories cross δb). Secondly, we must also ensure that the
void/bubble region is not itself contained inside of a collapsing re-
gion (i.e. that δ < δc on all scales above the δb crossing), since that
would ‘overwhelm’ or ‘squeeze’ the bubble.14 Thirdly, and most
critical for our purposes, a ‘void’ or ‘bubble’ is not obviously well
defined in this context. Because there is no linear expansion here,
we cannot derive the equivalent of the shell crossing criterion used
for dark matter halo voids, and there is no obvious threshold which
is physically as robust as the self-gravity criterion for collapse. We
will return to this question and consider different plausible, but
ultimately somewhat arbitrary choices of underdensity criterion.

If the ‘bubble’ barrier δb and the collapse barrier (which must be
avoided on scales above the bubble) δc were constant, then Sheth &
van de Weygaert (2004) show that the first-crossing distribution can
be analytically re-derived subject to these boundary conditions, to
give the fraction of trajectories in bubbles per logarithmic interval
dln ν b:

νb fb(νb) =
∞∑

n=1

2nπD2

ν2
b

sin (nπD) exp

(
−n2π2D2

2ν2
b

)
, (47)

D ≡ |δb|
δc + |δb| , νb ≡ |δb|

S(R)1/2
. (48)

Recalling that we are sampling the Eulerian space, we can then
trivially translate this to the number density of bubbles per unit
radius or mass, e.g.

dn

d ln R
= 1

Vb

df

d ln R
= νb fb(νb)

1

Vb

d ln νb

d ln R
, (49)

where Vb is the effective volume of the bubble.
Again, we stress that the barrier is not constant, so we do not know

that this will be an accurate approximation. More rigorously, it is
straightforward to derive the same first-crossing distribution using
the Monte Carlo approach in Section 3.1. We follow the identical
procedure, but simply record the first crossing of δb(R) for those
trajectories that cross δ(R) < δb(R) and have not crossed δc(R) at
any larger scale.

The results of this exact calculation, and the analytic approxi-
mation from equation (47), are shown in Fig. 2, for two different
choices of δb. First, we consider a simple underdensity criterion:
here ρb ≤ ρ0/100. There is a very broad distribution of bubbles
which satisfy this criterion: it includes several tens of per cent of
the total mass. The characteristic spatial ‘bubble scale’ is at a factor
of ∼0.1 h, which (for the definitions used here) corresponds very
closely to the scale at which the local contributions to density fluctu-
ations (�S) are maximized. A large population of such fluctuations
must arise for a density distribution similar to equation (6): because
the distribution is lognormal, the median density is ln (ρmed/ρ0) =
−σ 2/2; i.e. for σ ∼ 1.3 dex fluctuations, ρmed ≈ 0.01 ρ0, so of the
order of half the volume should be in underdense regions. For any
fixed (fractional) density threshold ρb/ρ0, the behaviour is qual-
itatively similar, but shifts systematically to smaller scales R and
smaller normalization (the total mass in such regions scaling as
∼ exp (−ν2

b/2) as ρb/ρ0 decreases.

14 The details of the criterion for this can be subtle and more complex than
simply being in a collapsing region, since smaller overdensities can also
‘squeeze’ voids. This is discussed in detail in Sheth & van de Weygaert
(2004). However, because we do not need to map here between initial and
final overdensities, many of these ambiguities are avoided.

There is nothing physically ‘special’ about such regions – they
are simply the low-ρ portion of the density PDF. A more mean-
ingful threshold might be to define ‘bubbles’ as regions where the
cooling time becomes longer than the free-fall time. The isothermal
temperature cs is however quite low, so this will not be satisfied
unless the temperature suddenly increases; for this, consider the
shocks occurring in the turbulent medium at vs ∼ vt(R). Knowing
E(k), we can estimate the distribution of post-shock temperatures
and densities for a random Lagrangian parcel, and compare the re-
sulting cooling time to the free-fall time tff ≈ 0.54/

√
Gρ. Since

we are interested in the regime where the cooling time will be long,
we can simplify the problem by assuming a strong adiabatic shock
and that thermal Brehmsstrahlung dominates the cooling. In this
regime, tcool ≡ n kB T/�n2 ≤ tff at densities

nb(R) � 10−4 cm−3

(
vt(R)

10 km s−1

)2

. (50)

If we normalize our model to MW-like conditions by assuming
σ g(h) ≈ 10 km s−1 and n0 = ρ0/μmp ≈ 1 cm−3, then this defines
δb. The resulting distribution of bubbles is shown in Fig. 8. Quali-
tatively, the shape of the distribution is similar – it truncates more

Figure 8. Predicted differential volume fraction in underdense ‘bubbles’
as a function of bubble radius R. For illustrative purposes, we assume h =
200 pc but the scale Rbubble scales ∝ h. Top: bubbles defined as a proportional
underdensity ρ ≤ρ0/100. Bottom: bubbles defined as regions where the post-
shock cooling time at velocities ∼vt(R) exceeds the free-fall time ∼1/

√
Gρ.

Because determining the cooling time requires absolute units, we normalize
the model by assuming 	 = 10 M� pc−2. The exact solution (black solid
lines) is compared to the approximate analytic solution (red dashed) from
equation (47). A broad distribution of underdense regions should be present
simply from turbulent velocity divergences, which can have sizes ∼h and
contain a large fraction of the disc mass. However, only a small fraction will
‘self-heat’ to temperatures where they cannot cool – ‘hot’ bubbles require
energy input from some source (e.g. stellar feedback).
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rapidly at low R because the decrease of turbulent velocities 〈vt(R)〉
with decreasing R means that the barrier becomes more difficult to
cross. The normalization is also significantly lower, corresponding
to the lower absolute densities (ρb/ρ0 ∼ 10−4) needed near scales
∼h to reach this ‘hot gas’ threshold.

In both cases, the analytic approximation of equation (47) works
well for the largest voids (albeit with a factor of ∼1–1.5 normaliza-
tion offset), but is systematically offset for low-mass voids. This is
directly a consequence of the moving barriers δc and δb.

In Fig. 9, we compare the predicted size function of bubbles (in
dimensionless units) to observations of H I ‘holes’. We compile the
observed H I hole size distributions in the Small Magellanic Cloud
(SMC; Staveley-Smith et al. 1997), Holmberg II (Puche et al. 1992)
and M31 (Brinks & Bajaja 1986), and scale the normalization of
each according to the observed global galaxy properties measured
at the radii enclosing half the ‘holes’. Observations of the LMC
(Kim et al. 1999), IC 2574 (Walter & Brinks 1999) and M33 (Deul
& den Hartog 1990) give similar results.

There is no well-defined criterion for selection of ‘holes’ and
the density contrasts involved are typically modest, so we simply
compare with the prediction for a constant density contrast ρb ≤
ρ0/10. This is approximately consistent with the direct estimates of
the interior bubble densities/density contrast, and also (for the global
properties of these systems) corresponds to densities where even the
largest (few hundred pc) holes would become fully ionized either
from the diffuse galactic background or from a single O/B star inside
the ‘hole’. The agreement is good – if anything, the model predicts
more small ‘holes’, but this may be a question of observational
selection/completeness (or a deficit of sources to ionize them). The
characteristic hole size is predicted to scale with h (the characteristic
radius), giving larger holes in thicker galaxies – a well-observed

Figure 9. Comparison of predicted and observed hole/bubble radii. We plot
the predicted cumulative number of bubbles as a function of bubble size for
our standard model, in dimensionless units (bubble size in units of h). Here,
we assume a simple order-of-magnitude proportional bubble underdensity
ρ ≤ ρ0/10. For typical galaxy properties, this also corresponds to densities
at which the diffuse galactic ultraviolet background will fully ionize the
bubble. This allows us to plot all observed systems on the same figure. We
compare the observed H I hole radius functions from radius functions from
the SMC (Staveley-Smith et al. 1997), Holmberg II (Puche et al. 1992) and
M31 (Brinks & Bajaja 1986), and normalize them with the observed Mgas,
ρ0, h from the same sources. The agreement is good – most, if not all, of the
H I ‘holes’ are a natural consequence of turbulent density fluctuations and
require no input energy source to ‘clear them out’.

phenomenon (see Oey & Clarke 1997; Walter & Brinks 1999, and
references therein).

7 C O N S T RU C T I O N O F G M C ‘ M E R G E R
TREES’ FRO M THI S FORMALI SM

7.1 General considerations

One of the most powerful applications of the excursion-set ap-
proach in galaxy formation is the construction of the extended
Press–Schecter ‘merger trees’, conditional mass functions and for-
mation histories for dark matter halo populations, which form the
foundation of semi-analytic models. This provides a means to sta-
tistically link populations in time and self-consistently model their
evolution, with whatever additional physics are desired. We now
show that the same ‘merger tree’ approach can be applied here, to
derive the time evolution of the systems we have thus far considered
static.

Before we describe the mechanics of constructing these trees,
there are a couple of important physical distinctions that will neces-
sitate a somewhat different treatment from the typical methodology
in the dark matter halo EPS formalism.

First, unlike with dark matter haloes, there is no reason to be-
lieve that bound clouds are ‘conserved’ (modulo their mergers
into more massive clouds). In fact, we expect from observations
that they only live a short time, then are disrupted (Zuckerman
& Evans 1974; Williams & McKee 1997; Evans 1999; Evans
et al. 2009). So it makes no sense to begin from a present pop-
ulation of clouds and work backwards in time to construct the
tree (as is typically done for halo merger trees). Instead, we need
to forward-model the time evolution, to allow whatever model
physics the user desires to determine whether or not such clouds
survive.

Secondly, we cannot assume that all the mass is in collapsing
objects. We must therefore track uncollapsed elements as well,
allowing for their possible collapse at later times.

Thirdly, density fluctuations in a turbulent medium clearly do
not evolve according to simple linear growth, in the manner of
cosmological density perturbations. How, then, can we link a fluc-
tuation at any one time to that at another time? To do this, we
will assume that the turbulence is globally steady state: i.e. that
– excepting the behaviour of collapsing regions – the turbulent
velocity cascade is (statistically) maintained and, as a result, so
is the global density PDF. We stress that we are not attempting
to model how the turbulence is maintained. In this regime, the
density PDF for independent modes on different scales obeys a
generalized Fokker–Planck equation, with a diffusion term giving
the effectively ‘random walk’ behaviour of each Lagrangian den-
sity parcel (from small-scale encounters/shocks/accelerations) and
a drift term corresponding to damping/relaxation (from viscosity,
pressure forces, mixing and the energetic cost associated with large
velocity deviations). Under these conditions, if we know that the
stationary behaviour of the PDF for some variable x is a Gaussian
distribution with standard deviation σ x and zero mean, then the
probability distribution to find the system with value x at time t
given an initial distribution with (delta function) value x0 at time
t0 = t − � t is

p(x, t) dx = 1√
2π σ̃ 2

x

exp

(
− (x − x̃0)2

2 σ̃ 2
x

)
, (51)

σ̃x ≡ σx

√
1 − exp (−2 [t − t0]/τ ) ≈ σx

√
2 �t/τ, (52)
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x̃0 ≡ x0 exp (−[t − t0/τ ]) ≈ x0 (1 − �t/τ ), (53)

where the latter equalities are the series expansion for � t/τ �
1.15

The time-scale τ here is the time-scale on which the variance
of x(t) with respect to x0 grows, normalized by the steady-state
variance σ x, i.e. the time-scale of ‘mixing’ in the distribution. More
formally, the amplitude of the correlation between values in time
declines with exponential time-scale τ . In supersonic turbulence,
this is simply the crossing time

τ = ηtcross = ηR/
〈
v2

t (R)
〉1/2

, (54)

where η ≈ 1 is a constant which can be calibrated from numerical
simulations (Pan & Scannapieco 2010 find η ≈ 0.90−1.05 over the
range M ∼ 1.2−10).

7.2 The mechanism of tree construction

With these points resolved, it is straightforward to generalize our
approach to construct a time-dependent ‘fragmentation tree’. We
outline the methodology below.

(0) Define the variance S ≡ σ 2(R) and collapse threshold δc(R)
either directly or from the turbulent power spectrum E(k).

(1) Begin by constructing the initial conditions. Consider a
Monte Carlo ensemble of ‘trajectories’, as in Section 3.1. Each
trajectory δ(R) is defined by the values �δj on each scale Rj →
Rj − �R. We are free to choose whatever values of �δj define
an appropriate initial condition. For example, we can assume that
the medium has a density PDF corresponding to ‘fully developed’
turbulence and generate �δj exactly as in Section 3.1. Or, we can
begin with a perfectly smooth medium, setting all �δj = 0, and treat
all structures self-consistently as they develop. Critically, save the
full trajectories �δj [full δ(R)] for each member of the Monte Carlo
population, including those for which the region is ‘uncollapsed’
[δ(R) never crosses δc(R)].

(2) Evolve the system forward by one timestep �t. For a Fourier-
space tophat window, we can evolve the system by perturbing each
�δj independently according to equation (51) [obtaining a new,
perturbed trajectory δ(R, t + �t)]. The probability distribution for
the perturbed �δj(R, t + �t) is given by equation (51) with the
appropriate substitutions:

dp(�δj [t + �t])

d(�δj [t + �t])
= 1√

2πψ�S

× exp

(
− (�δj [t + �t] − �δj [t])2

2ψ (1 − ψ)−1 �S

)
,

ψ ≡ 1 − exp (−2 �t/τ ), (55)

τ ≡ R/
〈
vt(R)2

〉1/2
. (56)

This is equivalent to taking

�δj (t + �t) = �δj (t) exp (−�t/τ ) (57)

+R
√

�S (1 − exp (−2�t/τ )) (58)

15 In addition to being convenient later, these series expansions have the
properties that for small timesteps, they represent the only form that the
evolution of p(x, t) can take if we require that it conserve σ x in ensemble
average and conserve the growth in variance between x and x0 independent
of the choice of integration stepsize.

≈ �δj (t) (1 − �t/τ ) + R
√

2 �S �t/τ, (59)

where R is a Gaussian random number with unity variance. This is
done for all �δj in the trajectory, giving a new trajectory

δ(R, t + �t) ≡
Rj >R∑

j

�δj (Rj , t + �t), (60)

which can now be evaluated.
(3) After each timestep, evaluate all trajectories δ(R) in the

Monte Carlo ensemble. If the trajectory did not cross δc(R) at any R
in the previous timesteps – i.e. it represented an uncollapsed region
– then either it will remain uncollapsed [δ(R) < δc(R) at all R] in
the new timestep, or it will now cross the barrier at some Rc. The
largest such Rc corresponds to the collapse scale, defining a new
self-gravitating object with mass M ≡ 4π/3ρc(Rc)R3

c . Physically,
this event corresponds to the random density fluctuations from e.g.
shocks and other processes pushing this previously ‘diffuse’ gas
parcel to densities at which it becomes self-gravitating and col-
lapses. The trajectory should still be saved, but the mass is now
in a self-gravitating object, and the first-crossing scale on which it
became self-gravitating should be recorded.

If the trajectory already crossed the barrier at some Rc, then there
are two possibilities. If the trajectory no longer crosses the bar-
rier (or crosses at some smaller radius R < Rc), it has no effect
(continue to save the trajectory, but do not modify the properties
of the object). This corresponds to a decline in the ‘background’
density field – however, because the object is self-gravitating, this
cannot simply ‘random walk’ the collapsed region back into be-
ing uncollapsed. By definition, gravity will prevent such expan-
sion modulo some stronger forces applied in the model (discussed
below). However, if the trajectory now crosses the barrier δc(R)
at some larger Rc, new > Rc, this corresponds to a mass growth
event for the collapsed object. The mass of the cloud should be
updated to Mc, new → (4π/3)ρc(Rc, new)R3

c, new > Mc, and the first-
crossing/collapse radius updated to Rc → Rc, new. Unlike the case
with dark matter haloes (where all mass is locked into haloes, so
every growth event is a halo–halo merger), the fact that there is
uncollapsed mass means that some of these events correspond to
cloud–cloud mergers, while others correspond to previously ‘dif-
fuse’ gas reaching a self-gravitating threshold. If this distinction is
needed, the method in Somerville & Kolatt (1999) can easily be
generalized to decompose the mass growth �M = Mc, new − Mc

into a ‘progenitor cloud’ and ‘diffuse’ mass function.16

(4) Apply whatever cloud-specific physics are desired, in the
timestep �t, for the population of identified bound objects. This is
where the essence of any semi-analytic model enters. One could
assume clouds continue to collapse under gravity, that they form
stars (either instantaneously, or with some efficiency in time, or
with some association with clump–clump mergers), that they form
molecules (based on e.g. their local column densities and star for-
mation rates, SFRs), that they disrupt on some time-scale or as
some function of star formation/feedback properties, that they ac-
crete ‘diffuse’ material [e.g. Bondi–Hoyle accretion, which as a
non-local effect is not included in the ‘growth events’ in step (3)].
There are obviously a huge range of model physics than can be
included.

16 To first approximation, this has the same behaviour as the halo case:
namely that the ‘progenitor’ mass function has a similar shape to the ‘col-
lapsed object’ mass function, here with a similar ‘diffuse’ mass fraction.

C© 2012 The Author, MNRAS 423, 2016–2036
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



2032 P. F. Hopkins

One particularly interesting application of this model to bound
clouds is to consider recursively applying the same analysis within
each cloud, to determine the bound sub-units into which it will frag-
ment. For a given bound cloud, if the model defines some average
density and turbulent power spectrum (for example, assuming they
maintain their properties at collapse, virialize and contract by dissi-
pation, etc.), then the procedure to determine the mass function and
other properties of these ‘sub-clumps’ is exactly identical to the pro-
cedure for the ‘parent’ clumps, but with the revised or renormalized
density/mass/velocity properties of the ‘parent’ clump.

(5) Repeat steps (2)–(4), to continue to evolve the system in time
as desired.

We also note that despite our stated assumption of steady-state
turbulence, it is perfectly possible to make the global parameters
of the model (e.g. densities, masses, assumed structural properties
and turbulent power spectrum) arbitrary functions of time and/or
consequences of the explicit ‘cloud physics’ put into the model. For
example, allowing for continuous accretion and/or gas exhaustion
to systematically change the normalization of the density with time,
or allowing turbulent velocities to damp in the absence of some
feedback from clouds to ‘pump’ them. Likewise, it is possible to
repeat or rescale these experiments in different ‘intervals’ corre-
sponding to the average properties at different radii in a galaxy disc
(corresponding to e.g. an exponential profile) so that together the
Monte Carlo ensemble can represent the properties of the entire
galaxy disc. The only implicit assumption in the above is that these
properties evolve slowly, relative to the local mixing/equilibration
time for the turbulence (a crossing time).

7.3 Example: the rate of collapse into bound units
and constraints on cloud lifetimes

It is not our intention here to present a full semi-analytic model for
clouds. However, we briefly illustrate how such a model might be
used with a highly simplified implementation.

We follow steps (0)–(5) above, with the standard (dimensionless)
parameters and p = 2 power spectrum adopted throughout this
paper. The specification of the power spectrum and assumption
of marginal stability completely specify the model, except for the
physics applied to bound objects, step (4).

For these bound objects, we apply a toy ‘zero physics’ model,
with the only goal being to see the effects of different ‘cloud life-
times’ on the distribution of the ISM. When an object has col-
lapsed, we allow it to remain collapsed for a ‘lifetime’ Ltcross,
where tcross is the crossing time of the cloud at the time of col-
lapse Rc/vt(Rc) ≈ 1/

√
Gρc. When this time has elapsed, we ‘de-

stroy’ the cloud and recycle its material, in practice by ‘resetting’
the associated path (setting all �δj = 0 for the designated path).
The trajectory then re-grows with time according to equation (51),
essentially randomizing the density in a crossing time.

For any choice of L, the mass function and mass fraction in bound
objects will eventually converge to a steady-state value (in practice,
this requires only a couple of disc crossing times). Fig. 10 shows the
resulting steady-state mass fraction in collapsed and bound objects,
as a function of L from L � 1 to L � 1. When L � 1, the mass
fraction in collapsed objects is negligible and declines ∝ L at lower
L (as expected for systems with a constant formation rate). When
L � 1, the mass in collapsed objects quickly saturates near unity
(with an exponentially suppressed residual non-collapsed mass).
In this regime, because clouds live much longer than the typical
cloud–cloud merger time, the mass function also shifts to higher

Figure 10. Fraction of the total ISM gas mass and volume in bound
clouds, as a function of the cloud lifetime (in units of the cloud cross-
ing time). We follow a full population of clouds through a time-dependent
‘merger/fragmentation tree’ constructed as described in Section 7.2. When a
bound region collapses, we allow it to remain collapsed for a time tlifetime =
Ltdyn = L/(Rc/vt[Rc]) (tdyn is the crossing time at the moment of becoming
bound); when this time expires the mass is returned to the ‘diffuse’ (non-
bound) ISM. A lifetime ∼1−5 tdyn gives a fraction in bound units consistent
with the observed ISM; larger values lock all mass into bound units (and
will overpredict the GMC MF), smaller values the opposite.

and higher masses (roughly shifting the break/maximum GMC mass
Mbreak ∝ L).

Only choices with L ∼ 1–5 yield reasonable total collapsed
masses in steady state (of the order of tens of per cent, but with
of the order of tens of per cent of the mass also in the inter-clump
medium), and agreement with the observed GMC mass function.
This is easy to understand: because the density distribution evolves
on a crossing time, the rate of addition of mass to the GMC popu-
lation is ∼exp [−ν(hmax)2/2] Mgas/tdyn(hmax), where hmax ∼ h repre-
sents the most unstable wavelength, where ν(hmax) is of the order
of unity. So the lifetime for an appropriate steady state should be
L ∼ exp (ν2

max/2) ∼ a few.
This relates directly to idealized hydrodynamic simulations of

turbulent boxes with self-gravity. These experiments have found
that even when a forcing term is included to maintain the turbulent
cascade at all times (for a box which is globally stable against
collapse), a large fraction (tens of per cent) of the mass in the box
will reach densities where it becomes self-gravitating (presumably
turning into stars, if there is no feedback) in a free-fall time (see
e.g. the discussion in Padoan & Nordlund 2011). Here, we have
calculated the exact same quantity analytically (on a galaxy-wide
scale).

We can estimate the rate of collapse, in the absence of feedback,
by simply assuming that clouds are arbitrarily long-lived and then
calculating the time for some fraction of the mass to be bound into
clouds. We show this in Fig. 11. If we perform this exercise as
a function of the dimensionless Mach number Mh (for a p = 2
spectrum), we obtain

tconsumption

tdyn(h)
≈ 1.5 − 0.34

√
ln (1 + 3Mh/8), (61)

where we define tconsumption as the time to 1/2 of gas consumed and
tdyn(h) ≡ h/〈v2

t (h)〉1/2 ≈ �−1. Note the weak and positive depen-
dence of the collapse rate on Mh – this comes from our assumption
of marginal stability for the disc as a whole – at a fixed stability
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Figure 11. Mass fraction which collapses into bound sub-units per free-fall
time (defined as tff = 0.54/

√
Gρ0 ≈ h/σ (h) = �−1, if Q = 1), for systems

which are marginally stable on large scales, as a function of Mach num-
ber [normalized at large scales, Mh = M(h)]. Solid line is the analytic
prediction from running a suite of models as in Fig. 10, in which clouds
remain bound (are removed from the ‘diffuse’ medium). Given the same
global stability, systems with higher M have larger dispersions and more
rapidly cross the collapse barrier, but the scaling is weak. Without some
additional physics to disrupt bound objects, mass collapses at ∼Mgas/tdyn

independent of the maintenance of the large-scale cascade. We compare
with the results of high-resolution simulations of turbulence. First, ideal-
ized forced turbulent box simulations with collapse into sink particles from
Vázquez-Semadeni et al. (2003) (hydro) and Padoan & Nordlund (2011)
(hydro and MHD). For each, we select the runs which most closely match
the ‘marginally stable’ assumption (αvir ≈ 1 for the box). Secondly, full
disc galaxy simulations with no stellar feedback from Hopkins, Quataert &
Murray (2011) with ‘collapse rates’ defined as the modelled SFR (which
occurs in bound gas at densities n > 1000 cm−3, on ∼1 pc scales). As shown
therein, these all maintain Q ≈ 1 via gravitational instabilities; Mh is taken
as the mass-weighted average M for the disc gas averaged over a spatial
scale = h. Error bars show the scatter in both quantities. The excursion-set
model successfully predicts the results of fully non-linear hydrodynamic
simulations, within the scatter between different simulations/realizations.

level, larger M means a broader density PDF, and so increases the
collapse rate. We compare the resulting collapse rate as a function of
M to full numerical hydrodynamic simulations: both simulations
of small-scale, idealized turbulent boxes (in which self-gravitating
regions at the resolution limit are identified as sink particles), and
large-scale simulations of galaxy discs (without stellar feedback) in
which self-gravitating regions become ‘star particles’. In all cases,
we compare models with marginal stability on the largest scales.
Our analytic calculation is in good agreement with the full numeri-
cal calculation.

8 D ISCUSSION

We have used the fact that the ISM is supersonically turbulent on a
wide range of scales to develop a rigorous excursion-set model for
the formation, structure and time evolution of gas structures (e.g.
GMCs, massive clumps/cores, and voids) in the ISM. We derive
the conditions for self-gravitating collapse in a turbulent medium
applicable on both small scales (the Jeans condition) and large
scales (the Toomre criterion); together with the assumption that
the density distribution in supersonic turbulence is approximately
lognormal, we use this to derive the statistical properties of the
smoothed density field on all scales as a function of smoothing

scale R. We show, then, that (with some appropriate modifications
from the standard cosmological case) this becomes a well-defined
barrier crossing problem (albeit one with a complicated barrier
structure), for which the full methodology of excursion-set theory
can be applied.

We use this model to calculate the mass function of bound gas
structures (over the entire dynamic range from near the sonic length
to masses well above the Jeans mass). We do so in a rigorous manner
that explicitly resolves the ‘cloud-in-cloud’ problem. We show that
this agrees extremely well with observed GMC mass functions in
the MW and other nearby galaxies. This prediction is nearly inde-
pendent of any free parameters, with the only input being the mass
and size of the galaxies. Even galaxies such as M33, which has been
extensively discussed as apparently exhibiting a deviant GMC mass
function slope, are accurately predicted. The generic properties of
the mass function are rigorously derived: an exponential cut-off
above the Jeans mass (because large-scale density fluctuations are
suppressed by disc shear) and a faint-end power-law slope close to,
but slightly shallower than, −2 (which deviates logarithmically with
mass). It is near −2 (equal mass on all scales) generically because
the collapse threshold (being relative to ln ρ) is only a logarithmic
function of scale and gravity is scale free; but slightly shallower
because collapse is more difficult on small scales for any realistic
turbulent power spectrum. We show this is robust to large variations
in Mach number and velocity power spectrum shape, and even to
large deviations from exact lognormality in the density PDF.

The same model also predicts the linewidth–size and size–mass
relations of these clouds, in good agreement with observations.
The linewidth–size relation slope is a generic result of the assumed
turbulent power spectrum, but its normalization is predicted by
the assumption that the disc must be globally stable; the size–mass
relation follows from the collapse criteria. Second-order corrections
(from e.g. disc shear) make both less sensitive to the turbulent
index in the range p ∼ 5/3−2. Residuals from these relations
naturally emerge as a function of the galaxy surface density, in
good agreement with recent comparisons of GMC properties in the
MW outskirts and centre and in high-redshift galaxies.

The excursion-set theory also allows us to rigorously predict the
spatial correlation function and clustering properties of these clouds;
we predict that most of the mass in clouds should be weakly biased
(i.e. trace the overall gas density), but the most massive clouds will
preferentially be biased towards large-scale overdensities (e.g. spiral
arms). We construct the autocorrelation function of GMCs from the
catalogue of clouds in M33 and show that this agrees extremely well
with that predicted for clouds of the same mass. If we assume that
young star clusters should more or less trace the positions of their
‘parent’ clouds, then we can also compare their clustering. We show
that both the star cluster–gas mass cross-correlation function and
the star cluster autocorrelation function observed in the youngest
clusters in the Antennae and M51 agree well with that predicted,
over the observed range of scales R < 0.1 h to R > 10 h.

Using similar logic as applied to the GMC mass function, we
can predict the size and mass distributions of underdense ‘bubbles’
in the ISM. We show that a large fraction of the ISM should be
in highly underdense ‘bubbles’ with ρ � 0.01−0.1 ρ0, and that
the characteristic size should scale with scale-height h, as a natural
consequence of turbulent fluctuations. These require no additional
‘power source’ other than whatever maintains the turbulence. If
we consider the distribution of bubble/hole sizes below a density
threshold such that they should be easily ionized by the galactic
background, we show that this agrees very well with the H I ‘hole’
size distribution observed in nearby galaxies such as the SMC, M31
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and Holmberg II. The energetic cost of ‘creating’ these bubbles is
negligible, as compared to the nominally large P dV work required
if they were excavated by e.g. supernovae (SNe) explosions, and
they do not require any internal stars/star clusters to power their
expansion. Even if some are powered in this manner, it is clear that
many are not. This resolves a long-standing problem, as follow-up
observations of these ‘holes’ have consistently failed to observe SNe
remnants or other evidence of young stellar populations ‘powering’
the hole expansion (see e.g. Rhode et al. 1999; Weisz et al. 2009).
We stress that turbulence alone will not explain the gas in bubbles
being hot: the fraction of holes predicted to have a cooling time
much longer than a dynamical time from turbulent shocks alone is
small. But it will explain their sizes, expansion and densities. Where
they are heated, it requires a much smaller amount of energy, at that
point, to simply ‘leak into’ the bubble.

We generalize the excursion-set model of the ISM to allow the
construction of time-dependent ‘merger/fragmentation trees’ which
can be used to follow the evolution of clouds and construct semi-
analytic models for GMC and star-forming populations. We provide
explicit recipes to construct these trees. We use a simple example
to show that, if clouds were not destroyed by some feedback pro-
cess in a time-scale ∼1–5 crossing times, then all the ISM mass
would be ‘consumed’ (collapsing to arbitrarily high densities in
bound objects) even if the large-scale turbulent cascade were main-
tained. Absent such feedback, we show that our analytic calculation
can predict with reasonable accuracy the collapse rates seen in
full non-linear hydrodynamic [and magnetohydrodynamic (MHD)]
simulations of both turbulent boxes and galaxies over a wide range
of characteristic Mach numbers.

It is striking that we can predict so many properties of a highly
complex, chaotic and – unlike the cosmological case – fully non-
linear system with a single model. This suggests that a wealth of
properties of the ISM and GMC populations are generic conse-
quences of collapse in a supersonically turbulent medium with a
characteristic ‘scale’ set by gravitational instability in a gaseous
disc. This explains why different simulations (Ostriker et al. 2001;
Bournaud, Elmegreen & Elmegreen 2007; Dobbs 2008; Tasker &
Tan 2009; Tasker 2011) have been able to reproduce various aspects
of these observations, despite including very different physics for
cooling/feedback/star formation/magnetic fields, and in some cases
clearly failing to reproduce other (probably feedback-dependent)
properties such as the observed SFRs and galactic winds (see e.g.
the discussion in Hopkins et al. 2012, and references therein). What
is remarkable is that our theory allows us to calculate these non-
linear properties analytically, over a large dynamic range, and in
quantitative agreement with the observations.

We should also stress that this model does not necessarily im-
ply or require that the ISM structure be rigorously self-similar
or fractal: that may be true, but it is a much stronger statement
about the structure of S(R) and B(R) (compared to our assump-
tions). In our default model, those happen to be approximately
scale free over some range, but there are at least two scales – the
sonic length and disc scale-height – above/below which behaviour
changes. The application of this model also does not necessarily
imply that the ISM is ‘hierarchical’ either in the cosmological sense
or the sense of Vazquez-Semadeni (1994) (see Section 1). In fact
in the cosmological sense of the term, the predicted structure is
more appropriately ‘anti-hierarchical,’ in that collapse tends to pro-
ceed ‘top-down’. Large scales ∼h are most unstable and contain
most of the turbulent power, and we have shown that most self-
gravitating objects on small scales are formed by ‘fragmenting out’
of larger structures (i.e. form within parent GMCs; these are the

low-mass GMCs predicted if we ignore the cloud-in-cloud prob-
lem, which are much more abundant than isolated counterparts).
In contrast, in the cosmological case, small structures form first,
and ‘subhaloes’ are only a small fraction of the population at most
masses.

There are many interesting potential future directions for these
models. Many of our assumptions can be made more general, and the
model made more accurate. For example, if the gas is not isothermal,
or when magnetic fields and global gravitational forces are strong,
some deviations from lognormality are expected. We have argued
that should not qualitatively change our conclusions, but it is pos-
sible to rigorously treat this regime, by extending the excursion-set
formalism to non-Gaussian fields (as developed in e.g. Matarrese
et al. 2000; Afshordi & Tolley 2008; Maggiore & Riotto 2010b).
The Monte Carlo excursion-set approach is also completely gener-
alizable to treat correlated random walks, so that arbitrary higher
order structure functions (i.e. correlations between fluctuations on
different scales) can be incorporated – it is only a convenient simpli-
fying assumption to assume strict locality (see the review in Zent-
ner 2007). Near and below the sonic length (or in the warm/diffuse
ISM), when the turbulence is sub-/trans-sonic, additional correc-
tions to the power spectrum could be included. Magnetic fields
can also be included as more than just a correction to the effective
sound speed, if their power spectrum is well determined (see e.g.
Kim et al. 2002). We have also assumed that the density and velocity
field are not directly coupled, but it is in principle straightforward to
allow for a direct correlation between the local density and veloc-
ity fluctuations, to follow both with a higher dimensional random
walk and to incorporate this in the collapse criterion (see e.g. Sheth
& Tormen 2002). We have neglected large-scale gradients in e.g.
the disc surface density profile; this should not be important for
most GMCs since their sizes are �h, but a more rigorous calcu-
lation of global properties (e.g. the large-scale spatial distribution
of clouds) could consider each radial annulus in turn with some
global mass profile. Our derivation of the collapse barrier also as-
sumes spherical collapse, when in fact most GMCs are ellipsoidal
or triaxial. In the cosmological context, ellipsoidal collapse is a
well-studied problem (Sheth et al. 2001), and can be incorporated
via an appropriate change of the barrier shape (although the appro-
priate parameters are usually determined by reference to numerical
simulations); however, if the cosmological case is any guide, the
differences should be small (tens of per cent level).

The lack of dependence of many of the predicted observables
on the detailed properties of turbulence is, in one sense, reassuring
(and explains agreement between previous models with different
physics). On the other hand, unfortunately, it means that observa-
tions have a limited ability to discriminate between these different
physical scenarios. Of course, the ISM is not all highly supersonic,
and there will be some regimes in which the model here is not
appropriate. Implicitly, our model assumes that the ISM can cool
efficiently (cooling time short relative to the dynamical time), so
that the turbulence remains supersonic. This is easily satisfied inside
the radii that include most star formation in galactic discs. However,
at sufficiently large radii and very low gas densities, the galactic and
cosmological ionizing backgrounds maintain gas discs as fully ion-
ized with Q > 1. Even in the star-forming disc, there are bubbles of
hot gas that may escape before cooling. And a significant fraction of
the mass in the ‘warm’ ISM medium is turbulent and bound, but has
comparable thermal sound speeds and turbulent velocities (i.e. it is
trans-sonic rather than super-sonic). In this regime, it is necessary to
account explicitly for the effects of heating and cooling, for exam-
ple as in the model of Ostriker, McKee & Leroy (2010), since only
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regions pushed to a critical density where cooling becomes efficient
will behave as we assume. Even in this regime, however, the internal
structure of those cooling regions/GMCs should be treatable with
the model here, but it should be emphasized that this model is most
applicable to the cold/rapidly cooling gas rather than the extended
low-density gas.

There is also a huge space of physical predictions which can be
explored with this model that we have not yet addressed, some of
which may be more sensitive tests of the properties of turbulence
and ISM structure formation. Using the time-dependent formula-
tion, the growth of GMCs via turbulent density fluctuations, mergers
and accretion can be rigorously analytically calculated. By allowing
for global evolution of self-gravitating regions, it is possible to self-
consistently follow features that nominally appear to contradict the
model – for example, following a simple model whereby, once ‘de-
tached’ from the background, a cloud which collapses spherically
will naturally predict a power-law tail to high densities (in collaps-
ing regions), even though we can continue to use the same treatment
for each cloud internally. Together with a semi-analytic model for
star formation in such units, their destruction via feedback can also
be followed analytically in a self-consistent statistical model for
the population. Global feedback effects can also be predicted – for
example, many authors have used the cosmological formulation of
the problem to study the reionization history of the Universe and
evolving size distribution of H II regions (e.g. Haiman et al. 2000;
Furlanetto et al. 2004). It is straightforward to adapt their approach
to the problem here to predict the properties of galactic H II regions,
SNe blastwaves and ionizing photon escape fractions. The model
can be extended iteratively (downwards in scale) within GMCs, to
calculate the properties of dense collapsing subregions (cores). Ex-
tended sufficiently in scale, the model can even be used to predict
the stellar IMF in each subregion, following Hennebelle & Chabrier
(2008) – with a model determined on galactic scales. These scales,
being closer to the sonic length, should exhibit much stronger de-
pendence on the actual turbulent structure than the galactic-scale
quantities we calculate here (as seen in other analytic calculations
and simulations; see Ballesteros-Paredes et al. 2006; Hennebelle &
Chabrier 2009), and might be used to break degeneracies between
different models for the ISM microphysics.

AC K N OW L E D G M E N T S

We thank Chris McKee and Eliot Quataert for helpful discussions
during the development of this work. We also thank the anonymous
referee as well as Patrick Hennebelle, Gilles Chabrier and Alyssa
Goodman for a number of suggestions and thoughtful comments.
Support for PFH was provided by the Miller Institute for Basic
Research in Science, University of California Berkeley.

R E F E R E N C E S

Afshordi N., Tolley A. J., 2008, Phys. Rev. D, 78, 123507
Anathpindika S., 2011, New Astron., 16, 323
Ballesteros-Paredes J., Gazol A., Kim J., Klessen R. S., Jappsen A.-K.,

Tejero E., 2006, ApJ, 637, 384
Ballesteros-Paredes J., Hartmann L. W., Vázquez-Semadeni E., Heitsch F.,

Zamora-Avilés M. A., 2011a, MNRAS, 411, 65
Ballesteros-Paredes J., Vazquez-Semadeni E., Gazol A., Hartmann L. W.,

Heitsch F., Colin P., 2011b, MNRAS, 416, 1436
Begelman M. C., Shlosman I., 2009, ApJ, 702, L5
Blitz L., Rosolowsky E., 2006, ApJ, 650, 933
Block D. L., Puerari I., Elmegreen B. G., Bournaud F., 2010, ApJ, 718, L1

Bolatto A. D., Leroy A. K., Rosolowsky E., Walter F., Blitz L., 2008, ApJ,
686, 948

Boldyrev S., Nordlund Å., Padoan P., 2002, ApJ, 573, 678
Bonazzola S., Heyvaerts J., Falgarone E., Perault M., Puget J. L., 1987,

A&A, 172, 293
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
Bournaud F., Elmegreen B. G., Elmegreen D. M., 2007, ApJ, 670, 237
Bournaud F., Elmegreen B. G., Teyssier R., Block D. L., Puerari I., 2010,

MNRAS, 409, 1088
Bower R. G., 1991, MNRAS, 248, 332
Bowman J. C., 1996, J. Fluid Mech., 306, 167
Brinks E., Bajaja E., 1986, A&A, 169, 14
Burgers J., 1973, The Nonlinear Diffusion Equation: Asymptotic Solutions

and Statistical Problems.· Reidel, Dordrecht
Bussmann R. S. et al., 2008, ApJ, 681, L73
Chandrasekhar S., 1951, R. Soc. Lond. Proc. Ser. A, 210, 26
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Deul E. R., den Hartog R. H., 1990, A&A, 229, 362
Dobbs C. L., 2008, MNRAS, 391, 844
Elmegreen B. G., 1987, ApJ, 312, 626
Elmegreen B. G., 2002, ApJ, 564, 773
Engargiola G., Plambeck R. L., Rosolowsky E., Blitz L., 2003, ApJS, 149,

343
Evans N. J., II, 1999, ARA&A, 37, 311
Evans N. J. et al., 2009, ApJS, 181, 321
Federrath C., Roman-Duval J., Klessen R. S., Schmidt W., Mac Low M.-M.,

2010, A&A, 512, A81
Fukui Y. et al., 2008, ApJS, 178, 56
Furlanetto S. R., Zaldarriaga M., Hernquist L., 2004, ApJ, 613, 1
Gao Y., Solomon P. M., 2004, ApJ, 606, 271
Goldsmith P. F., Heyer M., Narayanan G., Snell R., Li D., Brunt C., 2008,

ApJ, 680, 428
Goodman A. A., Barranco J. A., Wilner D. J., Heyer M. H., 1998, ApJ, 504,

223
Goodman A. A., Pineda J. E., Schnee S. L., 2009a, ApJ, 692, 91
Goodman A. A., Rosolowsky E. W., Borkin M. A., Foster J. B., Halle M.,

Kauffmann J., Pineda J. E., 2009b, Nat, 457, 63
Haiman Z., Abel T., Rees M. J., 2000, ApJ, 534, 11
Hennebelle P., Chabrier G., 2008, ApJ, 684, 395
Hennebelle P., Chabrier G., 2009, ApJ, 702, 1428
Heyer M., Krawczyk C., Duval J., Jackson J. M., 2009, ApJ, 699, 1092
Hopkins P. F., Quataert E., Murray N., 2011, MNRAS, 417, 950
Hopkins P. F., Quataert E., Murray N., 2012, MNRAS, 421, 3488
Hopkins P. F., 2012a, MNRAS, submitted (arXiv:1204.2835)
Hopkins P. F., 2012b, MNRAS, doi:10.1111/j.1365-2966.2012.20731.x
Kim J., Ryu D., 2005, ApJ, 630, L45
Kim S., Dopita M. A., Staveley-Smith L., Bessell M. S., 1999, AJ, 118,

2797
Kim W.-T., Ostriker E. C., Stone J. M., 2002, ApJ, 581, 1080
Klessen R. S., 2000, ApJ, 535, 869
Kowal G., Lazarian A., Beresnyak A., 2007, ApJ, 658, 423
Kritsuk A. G., Norman M. L., Padoan P., Wagner R., 2007, ApJ, 665, 416
Krumholz M. R., McKee C. F., 2005, ApJ, 630, 250
Lacey C., Cole S., 1993, MNRAS, 262, 627
Larson R. B., 1981, MNRAS, 194, 809
Lemaster M. N., Stone J. M., 2009, Rev. Mex. Astron. Astrofis. Ser. Conf.,

36, 243
Li Z.-Y., Nakamura F., 2006, ApJ, 640, L187
Li P. S., Norman M. L., Mac Low M.-M., Heitsch F., 2004, ApJ, 605, 800
Lombardi M., Alves J., Lada C. J., 2010, A&A, 519, L7
Mac Low M.-M., Klessen R. S., 2004, Rev. Mod. Phys., 76, 125
Maggiore M., Riotto A., 2010a, ApJ, 711, 907
Maggiore M., Riotto A., 2010b, ApJ, 717, 526
Matarrese S., Verde L., Jimenez R., 2000, ApJ, 541, 10
McKee C. F., Ostriker E. C., 2007, ARA&A, 45, 565
Mo H. J., White S. D. M., 1996, MNRAS, 282, 347
Nordlund Å. K., Padoan P., 1999, in Franco J., Carraminana A., eds, Inter-

stellar Turbulence. Cambridge Univ. Press, Cambridge, p. 218

C© 2012 The Author, MNRAS 423, 2016–2036
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



2036 P. F. Hopkins

Oey M. S., Clarke C. J., 1997, MNRAS, 289, 570
Oka T., Hasegawa T., Sato F., Tsuboi M., Miyazaki A., Sugimoto M., 2001,

ApJ, 562, 348
Ostriker E. C., Gammie C. F., Stone J. M., 1999, ApJ, 513, 259
Ostriker E. C., Stone J. M., Gammie C. F., 2001, ApJ, 546, 980
Ostriker E. C., McKee C. F., Leroy A. K., 2010, ApJ, 721, 975
Padoan P., Nordlund Å., 2002, ApJ, 576, 870
Padoan P., Nordlund Å., 2011, ApJ, 730, 40
Padoan P., Nordlund A., Jones B. J. T., 1997, MNRAS, 288, 145
Padoan P., Jimenez R., Nordlund Å., Boldyrev S., 2004, Phys. Rev. Lett.,

92, 191102
Padoan P., Juvela M., Kritsuk A., Norman M. L., 2006, ApJ, 653, L125
Pan L., Scannapieco E., 2010, ApJ, 721, 1765
Passot T., Vazquez-Semadeni E., 1998, Phys. Rev. E, 58, 4501
Pineda J. E., Rosolowsky E. W., Goodman A. A., 2009, ApJ, 699, L134
Press W. H., Schechter P., 1974, ApJ, 187, 425
Price D. J., Federrath C., Brunt C. M., 2011, ApJ, 727, L21
Puche D., Westpfahl D., Brinks E., Roy J.-R., 1992, AJ, 103, 1841
Rhode K. L., Salzer J. J., Westpfahl D. J., Radice L. A., 1999, AJ, 118, 323
Rosolowsky E., 2005, PASP, 117, 1403
Rosolowsky E., Blitz L., 2005, ApJ, 623, 826
Rosolowsky E. W., Pineda J. E., Kauffmann J., Goodman A. A., 2008, ApJ,

679, 1338
Scalo J., Vazquez-Semadeni E., Chappell D., Passot T., 1998, ApJ, 504, 835
Scheepmaker R. A., Lamers H. J. G. L. M., Anders P., Larsen S. S., 2009,

A&A, 494, 81
Schmidt W., Federrath C., Klessen R., 2008, Phys. Rev. Lett., 101, 194505
Schmidt W., Federrath C., Hupp M., Kern S., Niemeyer J. C., 2009, A&A,

494, 127
Scoville N. Z., Yun M. S., Sanders D. B., Clemens D. P., Waller W. H., 1987,

ApJS, 63, 821
Sheth R. K., Tormen G., 2002, MNRAS, 329, 61

Sheth R. K., van de Weygaert R., 2004, MNRAS, 350, 517
Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1
Slyz A. D., Devriendt J. E. G., Bryan G., Silk J., 2005, MNRAS, 356, 737
Somerville R. S., Kolatt T. S., 1999, MNRAS, 305, 1
Stanimirovic S., Staveley-Smith L., Dickey J. M., Sault R. J., Snowden S.

L., 1999, MNRAS, 302, 417
Staveley-Smith L., Sault R. J., Hatzidimitriou D., Kesteven M. J., McConnell

D., 1997, MNRAS, 289, 225
Swinbank A. M. et al., 2011, ApJ, 742, 11
Tasker E. J., 2011, ApJ, 730, 11
Tasker E. J., Tan J. C., 2009, ApJ, 700, 358
Toomre A., 1977, ARA&A, 15, 437
Vazquez-Semadeni E., 1994, ApJ, 423, 681
Vázquez-Semadeni E., Garcı́a N., 2001, ApJ, 557, 727
Vazquez-Semadeni E., Gazol A., 1995, A&A, 303, 204
Vázquez-Semadeni E., Ballesteros-Paredes J., Klessen R. S., 2003, ApJ,

585, L131
Walter F., Brinks E., 1999, AJ, 118, 273
Weisz D. R., Skillman E. D., Cannon J. M., Dolphin A. E., Kennicutt R. C.,

Jr, Lee J., Walter F., 2009, ApJ, 704, 1538
Williams J. P., McKee C. F., 1997, ApJ, 476, 166
Wilson C. D., Scoville N., Madden S. C., Charmandaris V., 2003, ApJ, 599,

1049
Wong T. et al., 2008, MNRAS, 386, 1069
Wong T. et al., 2009, ApJ, 696, 370
Zentner A. R., 2007, Int. J. Mod. Phys. D, 16, 763
Zhang Q., Fall S. M., Whitmore B. C., 2001, ApJ, 561, 727
Zuckerman B., Evans N. J., II, 1974, ApJ, 192, L149

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2012 The Author, MNRAS 423, 2016–2036
Monthly Notices of the Royal Astronomical Society C© 2012 RAS




