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ABSTRACT

We report the discovery of 854 ultra diffuse galaxies (UDGs) in the Coma cluster using deep R band
images, with partial B, i, and Hα band coverage, obtained with the Subaru telescope. Many of them
(332) are Milky Way-sized with very large effective radii of re > 1.5 kpc. This study was motivated by
the recent discovery of 47 UDGs by van Dokkum et al. (2015a); our discovery suggests > 1, 000 UDGs
after accounting for the smaller Subaru field (4.1 degree2; about 1/2 of Dragonfly). The new Subaru
UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great
majority are (likely longtime) cluster members. They are a passively evolving population, lying along
the red sequence in the color-magnitude diagram with no signature of Hα emission. Star formation
was, therefore, quenched in the past. They have exponential light profiles, effective radii re ∼ 800 pc-
5 kpc, effective surface brightnesses µe(R) =25-28 mag arcsec−2, and stellar masses ∼ 1 × 107M� -
5 × 108M�. There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to
the cluster center than previously reported; their survival in the strong tidal field, despite their large
sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The
indicated baryon fraction . 1% is less than the cosmic average, and thus the gas must have been
removed (from the possibly massive dark halo). The UDG population is elevated in the Coma cluster
compared to the field, indicating that the gas removal mechanism is related primarily to the cluster
environment.
Subject headings: galaxies: clusters: individual (Coma) – galaxies: evolution – galaxies: structure

1. INTRODUCTION

This study is motivated by the discovery of 47 ul-
tra diffuse galaxies (UDGs) in the Coma cluster by van
Dokkum et al. (2015a) using the Dragonfly Telescope Ar-
ray (Abraham & van Dokkum 2014, hereafter Dragon-
fly). This unexpected discovery revealed a new popu-
latoin of low surface brightness (SB) galaxies. Indeed,
their central SBs are very low 24-26 mag arcsec−2 in g-
band and their median stellar mass is only ∼ 6×107M�,
despite their effective radii re = 1.5-4.6 kpc being as large
as those of L∗ galaxies (e.g., ∼ 3.6 kpc for the Milky Way
(MW), calculated from Rix & Bovy 2013). van Dokkum
et al. (2015a) speculated that the UDGs probably have
very high dark matter fractions as they have survived in
the strong tidal field of the cluster.

Dragonfly is optimized to efficiently discover faint
structures over a large field of view, but has relatively
poor spatial resolution with seeing and pixel scales of
∼ 6′′ and 2.8′′, respectively. The above properties of
the Dragonfly UDGs were derived after their discovery
from archival Canada France Hawaii Telescope imaging.
Follow-up studies are needed to understand their nature
and origin, as well as their relationship to the cluster en-
vironment (Boselli & Gavazzi 2014, for review) and to
other more studied galaxy populations, such as dwarfs

jin.koda@stonybrook.edu
1 Department of Physics and Astronomy, Stony Brook Univer-

sity, Stony Brook, NY 11794-3800
2 Optical and Infrared Astronomy Division, National Astro-

nomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo,
181-8588, Japan

3 Department of Advanced Sciences, Hosei University, 3-7-2,
Kajinocho, Koganei, Tokyo, 184-8584 Japan

4 SOKENDAI (The Graduate University for Advanced Stud-
ies), Mitaka, Tokyo, 181-8588, Japan

and low SBs, in clusters (e.g., Binggeli & Cameron 1991;
Bothun et al. 1991; Ulmer et al. 1996, 2011; Adami et al.
2006b, 2009; Lieder et al. 2012; Ferrarese et al. 2012).

Optical telescopes of larger aperture are advantageous
for a resolved study of this population. Yamanoi et al.
(2012) used the Subaru Prime Focus Camera (Suprime-
Cam; Miyazaki et al. 2002) on the Subaru telescope and
derived a galaxy luminosity function down to MR ∼ −10
in Coma. Their three 34′ × 27′ fields include nine Drag-
onfly UDGs. All of the nine were easily found in their
catalog, being resolved spatially in the images. There-
fore, Subaru imaging can identify this new galaxy pop-
ulation efficiently and permits an investigation of their
internal properties. Several archival Subaru images are
available for the Coma cluster (Yagi et al. 2007; Yoshida
et al. 2008; Yagi et al. 2010; Okabe et al. 2010, 2014). In
this Letter, we use the archival Subaru data and report
the discovery of 854 UDGs, implying ∼ 1000 UDGs after
scaling for the Dragonfly field-of-view.

We adopted m −M = 35.05 (Kavelaars et al. 2000)
as the distance modulus of the Coma cluster, which cor-
responds to an angular diameter distance of 97.5 Mpc
(1′′ = 0.47 kpc) 5. The full catalog of the Subaru UDGs
will be published in Yagi et al. (in preparation). We use
the AB-magnitude system in this work.

2. DATA

The raw R band images from the Suprime-Cam were
obtained from the Subaru data archive (Baba et al.
2002). Suprime-Cam has a mosaic of ten 2048 × 4096
CCDs and covers a wide field of 34′×27′ with a pixel scale
of 0.202′′. An eighteen-pointing mosaic with Suprime-

5 We adopted the Cosmological parameters of (h0,ΩM ,
Ωλ)=(0.71, 0.27,0.73) from Larson et al. (2011).
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Fig. 1.— The 2.86 deg×2.90 deg (∼ 4.87 × 4.94 Mpc2) area centered on the Coma cluster, the same area as in Figure 1 of van Dokkum
et al. (2015a). (a) Image from the Digitized Sky Survey. The white borders show the 18 fields covered in the Subaru R band (Okabe et al.
2014), which have the total area of 4.1 degree2, about 1/2 of the Dragonfly coverage. Red indicates the area analyzed by Yamanoi et al.
(2012). Yellow outlines the area analyzed by Yagi et al. (2010) using the Subaru B, R, Hα, i bands. Cyan indicates the area in Figure 2.
The center of the cluster (αJ2000,δJ2000)=(12:59:42.8,+27:58:14) is marked with a green cross (White et al. 1993). (b) The same area as in
(a), showing the distribution of the 854 Subaru UDGs (circles). The MW-sized UDGs, with large effective radii (> 1.5 kpc), are shown in
blue. The Subaru field coverage in R is enclosed with the solid line. The 47 Dragonfly UDGs are indicated with red crosses.

Cam was taken by Okabe et al. (2014) and covered about
4.1 deg2 (Figure 1). The seeing was 0.6-0.8′′, typically
0.7′′. Integration times for the 18 fields were not the
same, resulting in variations in background noise, i.e.,
28.3-28.7 mag arcsec−2 (1σ) in a 2′′ aperture (equivalent
to 30.0-30.4 mag arcsec−2 in a 10′′ aperture, ∼ 1 mag
deeper than van Dokkum et al. 2015a). The very cen-
tral field has a higher variation of 27.8 mag arcsec−2 since
the field is contaminated by the outer envelope of bright
galaxies.

The data were reduced in a standard way (Yagi et al.
2002, 2010). We used self-sky flat images, subtracted sky
background locally in each small grid (256 × 256 pixel2;
51.7′′ × 51.7′′), used the WCSTools (Mink 2002) for as-
trometry, and applied a photometric calibration (Yagi
et al. 2013) using the Sloan Digital Sky Survey (SDSS)-
III DR9 catalog (Ahn et al. 2012). The grid size for the
background subtraction was larger than the expected size
of UDGs (< 30′′ ∼ 15 kpc). The Galactic extinction in
R band varies from 0.016 to 0.031 mag across the 18-
field mosaic (Schlafly & Finkbeiner 2011). We adopted
the Galactic extinction value at the center of each field
and neglected variation within each field. The final pho-
tometric error is . 0.1 mag. More details of the data
reduction procedure will be presented in Yagi et al. (in
preparation). In addition, we used the Suprime-Cam B,
i, and Hα reduced images (see Figure 1) by Yagi et al.
(2010) and Yamanoi et al. (2012).

We also analyzed a control field for comparison. The
R band data of one Suprime-Cam pointing, 1/18 of the
Coma field, were taken from the Subaru Deep Field

(SDF) project (Kashikawa et al. 2004). We used only
a part of the raw SDF exposures taken in June 2008 to
make the background noise comparable to that in the
Coma fields. The 1σ background noise in a 2′′ aperture
is 28.6 mag arcsec−2. For consistency we started from the
raw data and matched data reduction parameters.

3. IDENTIFICATION

Our goal is to find UDGs in the Subaru images. Forty
of the 47 UDGs discovered by Dragonfly are within the
Subaru R band coverage based on their coordinates (van
Dokkum et al. 2015a). All were detected significantly
(with the faintest one, DF27, off by 12.5′′ from the pub-
lished coordinate) and their structures were resolved in
the Subaru images. The detection threshold was approx-
imately 27.3 mag arcsec−2 in the R band. We describe
our selection procedure for the final catalog of 854 UDGs
in the Coma cluster. We found no counterparts in the
control field.

We ran SExtractor (version 2.19.5; Bertin & Arnouts
1996) on individual mosaic frames with a fixed de-
tection threshold of 27.3 mag arcsec−2 in R. We re-
moved a first set of spurious detections using SExtrac-
tor’s ”FLAGS < 4” and ”PETRO RADIUS > 0”. This
initial catalog had 2,627,495 objects, including dupli-
cates in the overlap regions of adjacent mosaic frames
(∼ 30 %). We used the Dragonfly UDGs as the fidu-
cial set in adjusting parameters for selection of UDG
candidates, but could not use exactly the same selec-
tion criteria as van Dokkum et al. (2015a) due to the
difference in image quality. We applied constraints on
R magnitude and size, ”18 < MAG AUTO < 26” and
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Ultra Diffuse Galaxies in Coma Cluster 3

Fig. 2.— Subaru BRi color image of the ∼ 6′ × 6′ region (∼ 170 × 170 kpc2 region at d = 97.7 Mpc), shown in cyan in Figure 1a. The
Dragonfly and Subaru UDGs are marked respectively with yellow and green circles with a diameter of 20′′ (∼ 9.5 kpc).

”FWHM(Gaussian) > 4′′” (i.e., all Dragonfly UDGs sat-
isfy this condition), which left 7,362 objects.

The reported effective radius of the Dragonfly UDGs
is re & 3.2′′ (using re from GALFIT; Peng et al. 2002).
However, in the resolved Subaru images we found that an
alternative constraint, SExtractor’s re & 1.5′′, captures
all the Dragonfly UDGs. We therefore used re > 1.5′′ and
a mean SB of 〈µ(re)〉 > 24 to choose UDG candidates.
[Note that we found that re from SExtractor and GAL-
FIT were occasionally very inconsistent; we use SExtrac-
tor’s re for identification and GALFIT’s re for studies
of structural properties.] We excluded objects with high
central concentrations (mostly high-z galaxies) by remov-
ing those whose mean SB within re deviates largely from
the SB at re. This constraint, µe − 〈µ(re)〉 < 0.8, left
1,779 candidates.

The final step was removal of spurious objects by vi-
sual inspection. Most spurious detections were due to
the crowding in the cluster, such as faint tidal tails and
galaxy blending, as well as distant edge-on disk galaxies,
artifacts at image edges, and optical ghosts. To minimize
human error, the four authors separately went through
all postage stamp images. After this step and removal of
duplications based on their coordinates, 854 UDG candi-
dates were left on which at least three of us agreed. The
full catalog will be published by Yagi et al. (in prepara-
tion).

4. ULTRA-DIFFUSE GALAXY CANDIDATES

The 854 UDGs candidates from Subaru are visually
comparable to the Dragonfly UDGs. Figure 2 shows a
sample 6′ × 6′ field, showing the Subaru (green circles)
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and Dragonfly UDGs (yellow). Their low SBs are evident
compared to the surrounding galaxies, including ma-
jor galaxies in the cluster and distant background ones.
Their large sizes are also clear when compared to the
20′′ diameter of the circles (∼ 9.5 kpc at d = 97.5 Mpc).
The greater number of detections, compared to Dragon-
fly, may be due to the superior seeing (less blending) and
higher signal-to-noise ratio.

The majority of the 854 candidates are most likely
UDGs in the Coma cluster. One of them has been
spectroscopically confirmed as a cluster member (van
Dokkum et al. 2015b). The control SDF field has vir-
tually no counterparts – only thirteen were left after the
SExtractor-based selection, twelve of which were obvi-
ous image artifacts or tails of bright galaxies. The last
one appeared to be a blend of multiple objects. Hence,
contamination by non-cluster members is rare and neg-
ligible. Note, however, that some negligible number of
contaminations might still exist. For example, the third
object from the top in Figure 2 may be a background
spiral galaxy. Despite this significantly increased sam-
ple, the UDGs are still a minor population in the Coma
cluster (Yamanoi et al. 2012).

In the literature, we found that many of the Subaru
UDGs had been cataloged albeit as more compact ob-
jects; Adami et al. (2006a) found 248 of 309 that lay
within their coverage, and Yamanoi et al. (2012) 232 of
240. Among them, only 17 were classified as low SB
galaxies (Adami et al. 2006b). Their large extents and
low SBs were revealed for the first time in this study. We
note that eleven out of the 12 Dragonfly UDGs within
their field were also cataloged in Adami et al. (2006a),
but none were classified as low SB (Adami et al. 2006b).

5. STRUCTURAL PARAMETERS

The GALFIT package was used to measure the struc-
tural parameters of the Subaru UDGs. The fits were
made with a single Sersic profile (Sersic 1968) with sky
background fixed. We used SExtractor’s segmentation
images to mask surrounding objects. Seventy-nine of
the 854 required additional manual masks to exclude a
bright compact object(s) within their boundaries – inter-
estingly, sixty-seven of these appear to have compact nu-
clei at their centers. We judged the fits acceptable based
on the goodness-of-fit (χ2

ν < 1; 75 objects were thus ex-
cluded) and consistency between GALFIT and SExtrac-
tor measurements (re from GALFIT and SExtractor con-
sistent within a factor of 3; 11 removed). In this section,
we use the sample of 768 objects with good GALFIT re-
sults, out of which 332 have GALFIT’s re > 1.5 kpc (i.e.,
MW-sized UDGs as defined in van Dokkum et al. 2015a).
We refer to the former full set of galaxies as UDGs, and
the latter as MW-sized UDGs. Figure 3 shows some ex-
amples of GALFIT results for the UDGs of lowest SB, of
largest-size, and with a compact nucleus.

Figure 4(a), (b), and (c) show histograms of Sersic in-
dex (n), axis ratio (b/a), and central SB (µ0(R)). For
both UDGs and MW-sized UDGs, their average Ser-
sic indices 〈n〉 = 0.9-1.0 indicate an exponential pro-
file. The distributions of axis ratio, as well as its av-
erage 〈b/a〉 = 0.7-0.8, are skewed toward a large value;
therefore, this UDG sample does not consist of randomly-
oriented thin-disk galaxies in a statistical sense (which
would skew their distribution toward a low b/a). The

µ0(R) ranges around 23-26 mag arcsec−2. These results
are consistent with van Dokkum et al. (2015a) when the
difference in the adopted bands, SDSS g and Subaru R,
is taken into account (roughly g − R ∼0.8 mag for the
red-sequence in Coma).

The Subaru UDGs are likely an extension of normal
and dwarf galaxy populations and are not, on their own,
a distinct population. Figure 4(d) shows the properties
of the UDGs (crosses) with respect to normal galaxies
in Coma (circles; from Komiyama et al. 2002). The
apparent R magnitude of the UDGs is 18 to 24 mag, in-
dicating an absolute magnitude of about -12 to -16 mag
at the Coma distance. The smallest and faintest UDGs
(e.g., re < 1 kpc and MR < −12 in Figure 4c) over-
lap with the largest and brightest dwarf galaxies and
share some properties in common with them (e.g., the
exponential profile, nucleated population; see Tolstoy
et al. 2009; McConnachie 2012; Boselli & Gavazzi 2014).
Dotted lines represent constant SBs (µes) from 23 to 29
mag arcsec−2 with a 1 mag arcsec−2 interval, assuming
an exponential profile. The average SB of the Subaru
UDGs is distributed from about 25 mag arcsec−2 (i.e.,
a cut-off due to the selection) to 28 mag arcsec−2 (due
to the detection limit; this lower boundary is lower than
the pix-to-pix detection limit, because the UDGs are ex-
tended).

The absolute magnitudes correspond to stellar masses
of 1×107M�-5×108M� if we adopt a mass-to-light ratio
of M/LR ∼ 3. Note the M/LR varies by a factor of ∼ 2
for ages of 4-12 Gyr and metallicities between 0.2-1.0
solar based on calculations using Starburst99 (Leitherer
et al. 1999), a single starburst, and a Kroupa initial mass
function.

6. A PASSIVELY-EVOLVING POPULATION

The UDGs are distributed widely over the entire area
of the cluster with a concentration toward its center (Fig-
ure 1b). This spatial correlation also supports the as-
sumption that the great majority are cluster members.
Figure 1 nearly covers the virial radius of the cluster
(∼ 2.8 Mpc; ∼ 1.7 deg; Kubo et al. 2007), and reveals
their relatively symmetric distribution around the cen-
ter with a potential elongation toward the south west
(roughly toward NGC 4839). This symmetric, wide-
spread distribution may indicate their long history within
the cluster.

The UDGs closely follow the red-sequence of a
passively-evolving galaxy population on the color-
magnitude diagram. 232 UDGs are in the catalog of Ya-
manoi et al. (2012) with both B and R photometry. Fig-
ure 5 shows their distribution (green). The comparison
data (red and blue) show other cluster member galaxies,
as well as background galaxies, and are also from Ya-
manoi et al. (2012). The red-sequence is evident, and
the solid line is a fit by Yamanoi et al. (2012). Clearly,
the UDGs lie along this red-sequence, and their B-R
colors are around 0.8-1.0 mag. This is similar to the
trends found among dwarfs and low SB galaxies in clus-
ters (Adami et al. 2009; Ulmer et al. 2011; Lieder et al.
2012).

No significant Hα excess was found in UDGs. 217
UDGs are within the Subaru Hα coverage (yellow in
Figure 1a), which was designed to detect faint Hα emis-
sion around Coma member galaxies (Yagi et al. 2010).
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Largest Size Lowest Surface Brightness Nucleated

Fig. 3.— Examples of GALFIT results drawn from the groups of largest-size UDGs, lowest surface-brightness UDGs, and nucleated
UDGs.
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Fig. 4.— Structural properties of UDGs. (a) Histograms of Sersic index n, (b) axis ratio b/a, and (c) central SB µ0(R) with their
medians, averages, and standard deviations. Black lines are for all 854 UDGs, while blue are for 332 MW-sized UDGs alone. (d) Effective
radius vs. R magnitude. The parameters of the UDGs (crosses; red for the Dragonfly UDGs) are derived with GALFIT. Normal galaxies
(circles) –spestroscopically-confirmed Coma members (Mobasher et al. 2001) – are also plotted for comparison (from Komiyama et al.
2002, with the conversion R(AB)-R(Vega)=0.21). Dotted, diagonal lines show constant SBs (µes) from 23 to 29 mag arcsec−2 with a 1
mag arcsec−2 interval for the case of an exponential profile (note µ0 = µe − 1.82 for n = 1). The gap between the normal galaxies and
UDGs is due to selection effects. Horizontal lines show re of PSF with a FWHM of 1.5 arcsec (Komiyama et al. 2002) and a FWHM of
0.7 arcsec (this study).
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6 Jin Koda

Therefore, the UDGs are not forming stars at the cur-
rent epoch, as expected for passively-evolving galaxies.

7. DISCUSSIONS

We report the discovery of ∼ 1000 UDGs in the Coma
cluster, about 40% of which are MW-sized. The new
UDG sample is by no means complete, but already
contains 10-20 times more than previously known (van
Dokkum et al. 2015a). None of the UDGs show a sig-
nature of tidal distortions; this is our selection criteria,
but indicates that this sample of UDGs are not likely
recently-disrupted tidal debris.

The UDG population, compared to brighter galaxies,
is elevated in the Coma cluster, although a small num-
ber of large, low-SB galaxies are known in the field (Dal-
canton et al. 1997; Impey et al. 2001; Burkholder et al.
2001). f the UDG-to-brighter galaxy number ratio in
Coma were common in the field, the expected UDG pop-
ulation would be implausibly large, & 105 within 100
Mpc of the MW. To obtain this rough estimate, we used,
as a reference, galaxies in the SDSS (Ahn et al. 2012)
within 16 < r < 17 mag (−19 < Mr < −18 in ab-
solute magnitude) at the cluster’s redshift of 0.013-0.033
(Mobasher et al. 2001). The number of reference galaxies
in the field was estimated from the luminosity function
of Blanton et al. (2001). The estimated number in the
field, & 105, is crude, but seems too large compared to
the small number discovered so far. The cluster environ-
ment must play a role in their formation and evolution.

van Dokkum et al. (2015a) speculated that the MW-
sized UDGs might be a dark-matter (DM) dominated
population in order for them to survive in the strong
tidal field around the cluster core. In fact, the Dragonfly
UDGs spatially avoided the central r ∼300 pc region as
if the ones there had been tidally disrupted; this appar-
ent disruption was used to constrain the DM fraction (as
large as & 98%; van Dokkum et al. 2015a). Surprisingly,
we found UDGs even closer to the core (Figure 1b), and
the closest one is MW-sized only about 3′ (∼ 85 kpc)

away on the sky. Eleven UDGs were found within a ra-
dius of 5′ (∼ 141 kpc). These detections were, of course,
not complete due to the high background emission there,
and their apparent proximity may result from a chance
coincidence along a line of sight. If any of them are
within ∼ 100-150 kpc from the core, an even larger DM
mass than the estimate by van Dokkum et al. (2015a) is
necessary, and the baryon fraction within a tidal radius
should be . 1%. This is below the cosmic average, and
therefore, the baryons must have been removed from the
possibly very deep DM potential.

The possible removal of the gas, and quenching of
star formation (SF), are consistent with their red color
and clustering in Coma (indicating their longevity within
the cluster). The red-sequence can be produced by a
metallicity-sequence if galaxies have been evolving pas-
sively since SF was quenched (Kodama & Arimoto 1997).
Physical processes often suggested for the quench in-
clude (see Boselli & Gavazzi 2014, for review): (a)
blow out of gas due to galactic winds from supernovae
or AGN activities (Dekel & Silk 1986; Arimoto & Yoshii
1987), (b) ram-pressure stripping (Gunn & Gott 1972),
(c) tidal-interaction and harassment (Moore et al. 1996),
and (d) starvation due to the cessation of gas infall (Lar-
son et al. 1980). The elevated population in the cluster
indicates that environmentally-driven mechanisms, such
as (a), (b), and (c) are the most likely solutions [(a) may
occur if SF is induced by (b) or (c).].

We thank Alessandro Boselli, Samuel Boissier, Jim
Barrett, and an anonymous referee for helpful comments.
This research utilized facilities and resources provided
by the National Astronomical Observatory of Japan
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data archive system, and computers at the Astronomy
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Fig. 5.— Color-magnitude diagram using B and R band photometry. The green points are 232 UDGs observed both in B and R with
Subaru (the Dragonfly UDGs are circled), and the red and blue are red and blue galaxies taken from the Coma1 field of Yamanoi et al.
(2012) which includes cluster members as well as background galaxies. Due to saturation, most giant galaxies are not included, but the
red-sequence is evident. The UDGs clearly follow the red-sequence population of the Coma cluster.
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