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INTRODUUCTION. 

? 1. T-IE object of the present paper can be best explained by referring to a sentence 
which occurs in a paper by Professor G. H. DARWIN. : This is as follows : 

" The principal question involved in the nebular hypothesis seems to be the 

stability of a rotating mass of gas; but, unfortunately, this has remained up to now 
an untouched field of mathematical research. We can only judge of probable results 
from the investigations which have been made concerning the stability of a rotating 
mass of liquid." 

In so far as the two cases are parallel, the argument by analogy will, of course, be 
valid enough, but the compressibility of a gas makes possible in the gaseous nebula a 
whole series of vibrations which have no counterpart in a liquid, and no infe:rence as 
to the stability of these motions call be drawn from an examination of the behaviour 
of a liquid. Thus, although there will be unstable vibrations in a rotating mass of 

gas similar to those which are known to exist in a rotating liquid, it does not at all 
follow that a rotating gas will become unstable, in the first place, through vibrations 
which have a counterpart in a rotating liquid: it is at any rate conceivable that the 
vibrations through which the gas first becomes unstable are vibrations in which the 

compressibility of the gas plays so prominent a part, that no vibration of the kind 
can occur in a liquid. If this is so, the conditions of the formation of planetary 
systems will be widely differenl; in the two cases. 

With a view to answering the questions suggested by this argument, the present 
paper attempts to examine in a direct manner the stability of a mass of gravitating 
gas, and it will be found that, on the whole, the results are not such as could have 

been predicted by analogy from the results in the case of a gravitating liquid. The 

O "On the MAechanical Conditions of a Swarm of Meteorites, and on Theories of Cosmogony," 'Phil. 
Trans.,' A, vol. 180, p. 1 (1888). 
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iMR. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA. 

main point of difference between the two cases can be seen, almost without 
mathematical analysis, as follows:- 

? 2. Speaking somewhat loosely, the stability or instability may be measured by 
the resultant of several factors. In the case of an incompressible liquid we may say 
that gravitation tends to stability, and rotation to instability; the liquid becomes 
unstable as soon as the second factor preponderates over the first. The gravitational 
tendency to stability arises in this case from the surface inequalities caused by the 

displacement: Inatter is moved from a place of higher potential to a place of lower 

potential, and in this way the gravitational potential energy is increased. As soon 
as we pass to the consideration of a compressible gas the case is entirely different. 

Suppose, to take the simplest case, that we are dealing with a single shell of 

gravitating gas, bounded by spheres of radii i and r + di^, and initially in equilibrium 
under its own gravitation, at a uniform density p0. 

Suppose, now, that this gas is caused to uiidergo a tangential compression or 
dilatation, such that the density is changed from 

Po to Po + p 4,S,, 

where p, is a small quantity, and S, is a spherical surface harmonic of order ia. 

It will readily be verified that there is a decrease in the gravitational energy of 

amount 

47rr3 (dcr) (2n 1 J S, sin 0 d d0 . 

As this is essentially a positive quantity, we see that any tangential displacemernt 
of a single shell will decrease the gravitational energy. 

This example is sufficient to show that when the gas is compressible, the tendency 
of gravitation may be towards instability. The gravitation of the surface inequalities 
will as before tend towards stability, but when we are dealing with a gaseous nebula, 
it is impossible to suppose that a discontinuity of density can occur such as would be 

necessary if this tendency were to come into operation. Rotation as before will tend 
to instability, and the factor which makes for stability will be the elasticity of 
the gas. 

We can now see that there is nothing inherently impossible, or even improbable, 
in the supposition that for a gaseous nebula the symmetrical configuration may 
become unstable even in the absence of rotation. The question which we shall 

primarily attempt to answer is, whether or not this is, in point of fact, a possible 
occurrence, and if so, under what circumstances it will take place. To investigate 
this problem, it will be sufficient to consider the vibrations of a non-rotating nebula 
about a configuration of spherical symmetry. 

? 3. Unfortunately, the stability of a gaseous nebula of finite size is not a subject 
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which lends itself well to mathematical treatment. The principal difficulty lies in 

finding a system which shall satisfy the ordinarily assumed gas equations, and shall 
at the same time give an adequate representation of the primitive nebula of 

astronomy. 
If we begin by supposing a nebula to consist of a gas which satisfies at every 

point the ordinarily assumed gas equations, and to be free from the influence of all 
external forces, then the only configuration of equilibrium is one which extends to an 
infinite distance, and is such that the nebula contains an infinite mass of gas. The 

only alternative is to suppose the gas to be totally devoid of thermal conductivity, 
and in this case there is an equilibrium configuration which is of finite size and 
involves only a finite mass of gas. But the assumption that a gas may be treated as 

non-conducting finds no justification in nature. When we are dealing, as in the 

present case, with changes extending through the course of thousands of years, we 
cannot suppose the gas to be such a bad conductor of heat, that any configuration, 
other than one of thermal equilibrium, may be regarded as permanent. 

Professor DARWIN has pointed out that a nebula which consists of a swarm of 
meteorites may, under certain limitations, be treated as a gas of which the meteorites 
are the " molecules."* In this quasi-gas the mean time of describing a free path must 
be measured in days, rather than (as in the case of an actual gas) in units of 
10-9 second. The process of equalisation of temperature will therefore be much 
slower than in the case of an actual gas, and it is possible that the conduction of heat 

may be so slow that it would be legitimate to regard adiabatic equilibrium as 

permanent. t 

Except for this the mathematical conditions are identical, whether we assume the 

gaseous or meteoritic hypothesis. The present paper deals primarily with a nebula in 
which the equilibrium is conductive, but it will be found possible from the results 
arrived at, to obtain some insight into the behaviour of a nebula in which the 

equilibrium is partially or wholly convective. 

? 4. Whether we suppose the thermal equilibrium of the gas to be conductive or 

adiabatic, we are still met by the difficulty that the gas equations break down over 
the outermost part of the nebula, throughl the density not being sufficiently great to 
warrant the statistical methods of the kinetic theory. This difficulty could be avoided 

by supposing that the nebula is of finite size, and that equilibrium is maintained by 
a constant pressure applied to the outer surface of the nebuht. If this pressure is so 

great that the density of gas at the outer surface of the nebula is sufficiently large to 

justify us in supposing that the gas equations are satisfied everywhere inside this 
surface, then the difficulty in question will have been removed. On the other hand, 
this pressure can only be produced in nature by the impact of matter, this matter 

* G. H. DARWIN, loc. cit., ante. 

t lbd., p. 64. 
B 2 
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c3nsistinrg either of molecules or meteorites, so that we ar?e now called upon to take 
account of the gravitational forces exerted upon the nebula by this matter. This 
whole question is, however, deferred until a later stage; for the present we turn to 
the purely mathematical problem of finding the vibrations of a mass of gas which is in 

equilibrium in a spherical configuration. We shall consider two distinct cases. In the 
first, equilibrium is maintained by a constant pressure applied to the outer surface of 
the nebula, this surface being of radius R1. In the second, the nebula extends to infinity, 
and it is assumed that the ordinary gas equations are satisfied without limitation. We 

suppose for the present that the gas is in thermal equilibrium throughout. It is not, 
however, supposed that the gas is all at the same temperature; to make the question 
imore general, and to give a closer resemblance to the state of things which may be 

supposed to exist in nature, it will be supposed that the gas is collected round a solid 

spherical core of radius R0, and the temperature will be supposed to fall off as we 
recede from this core to the surface, the equation of conduction of heat being satisfied 
at every point. We shall also suppose that the gas is acted upon by an external 

system of forces, this system being, like the nebula, spherically symmetrical. The 
reason for these generalisations will be seen later; it will at any time be possible to 

pass to less general cases. 

THE CRITERION OF STABILITY. 

'The P'rincipcal Vibrations of a Spherical Nebula. 

? 5. We shall take the point about which the nebula is symmetrical as origin. It 
will be convenient to use rectangular co-ordinates x, y, z, in conjunction with polar 
co-ordinates r, 0, Wb. We shall imagine the nebula to undergo a small continuous 

(lisplacement; let the co-nmponents of this be w, rj, A, when referred to rectangular 
co-ordinates, and u, rv, rw sin 0 when referred to polars. Thus the point initially at 

, y, z or r, 0 , 

is found after displacement at 

x +, y r + ,z or r + ?u , + V + qw. 

The cubical dilatation of this displacement will be denoted by A, so that 

a'= + a + a 
a a1 a aw8 

- - a-r (r2u) + n- - 
- (v sin 0) + I,: ar v / sin 9 0 v / 

Scf 
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MR. J. H. JEANS ON TIHE STABILITY OF A SPIHERICAL NEBULA. 

In general we sliall delote tile density by p, p)resstre by zT, tenmperature by T, 
total potential by V, coefficient of conduection of heat by K, and the gas constant by X, 
the last of these being given by the equation 

a XTp ....... .(1). 

In the equilibrium configuration each of the quantities just defined is a function of 
r only. 

If c is any one of these quantities, we shall denote the 

Value of c in the equilibrium configuration, evaluated at x, y, z, by co. 
,displaced ,,, , ,,) co+ c. 

,, : ,, ,, ,,, , [at x+:, y+ r, z+4 by Co+C1. 

The quantities C), c', cl are, of course, not independent. Since co + c1 is the same 
function of x + , y + 1, z + 4, as is co + c' of x, y, z, we bave, as far as the first 
order of small quantities, 

Co ? , Co 
+ 

co 
co, + ci I co + c .a- 

0 +' + + + 

or, since c0 is a function of r' only, 

Ce - + .......... (2). 

? 6. From the equation of continuity we have at once 

Pl = Po A. . . . . . . . (3). 

Since X remains the same throughout the motion of any given elemenlt of the gas, 

I = 0. . . . . . . (4). 

Hence, from equation (1), 

Mo + t- = Xo (To + T1) (po + pi), 

giving as the value of 'w, 

-1 =-Xo (Tlpo + Topl) = ) ) . -. .o (5). 

So long as w e confine our attention to a single, element of the gas, the coefficient of 
conduction of heat is proportional to the square root of the temperature, and is 
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independent of the density.& We therefore have, as far as the first order of small 

quantities, 
KI -2T ?T- * f * . .(6). K 

- _ T . . . . . . . . . . . 

Lastly V', regarded as the difference between VO + V' and V0, is seen to be the 

potential of a volume-distribution of matter of density p', to which must be added: 

(i.) The potential of a surface-distribution over the sphere r = Ro, the surface 

density being 
- [u(p - 01)]r,,, 

where co is the mean density of the core, and 

(ii.) The potential of a surface-distribution over the sphere r = R,, the surface 

density being 

[K(Po C], I). 

where -cr is the density of the medium (if any) outside the nebula. 

? 7. We are now in a position to handle the equations of motion, and of conduction 
of heat. For the element which, in the undisturbed state, is at x, y, z, the equations 
of motion are three of the type 

m~% 7a (Po + ' 
a3t - (+v (pc + p') a~ (o + ') . (7 

Transforming to polar co-ordinates, these equations are equivalent to 

a a (V ') (p +) ~a (o'0 + . . . (8). 

a2 i av' 1 aIz 
at2 9 ao Por ao0 

r si. al; ? ad * _ * (1 0). 6ts r sin 0 
q 

po"' sin 0 (1 ). 

As an equation of equilibrium, we have 

av0 1 . . . (), 
ar P, ar 

and with the help of this, equation (8) reduces to 

3u aV' 1 aI ' a ' 3~o 
a ~ r po Q a p e ** a + . . (1 2), 

as far as the first order of small quantities. 

* BOLTZMANN, 'Vorlesungen iiber Gastheorie,' vol. 1, ? 13. 
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Let us write 

X=V' - /po * . .. ..... (13), 
so that 

ax _ avy i a + n ap( 
ar ar po a'r p0' al. 

then equation (12) becomes 

^at= -' x : + o ' 0- - p" 
z aar lPo3\ a"P a 3j5al- 

and, by the use of equation (2), this is seen to be equivalent to 

3%u 3% 3%0 apo\ 8a - + (p _ . . . . (14). 

Equations (9) and (10) now take the simple forms, 

a'v 1 ax aS2w 1 a 
at -- 2 a0 ata - sirin 0 a 

From these last two equations, we obtain at once 

aa a a~f,w a 0 OX Ix J_ (vsin 0) ? ( sii a /J 
i l a+2 at2 sin 0 a0 (v sin ?) + 11i 0 a 3 + sin 

or, what is the same thing, 

a2r ia a/axa 
a J{^ A /? r1 (r tt)\ - V2X- a (-1 a- - (15). 

? 8. The equationl of conduction of heat is, as far as the first order of small 

quantities, 

ap, + , 1 a/ IT i a T T 
M + CD- = 

- { --- + --(K- +-(K- } * . . (16), at at p a ax ay ay\ a a:\ 

in which p, K, T stand for Po + p', Ko + K/, mr + r' respectively. The notation is that 

of KmRCHHOFF; the equation may either be written down from first principles, or 

regarded as a simplified form of KIRCHHOFF'S general equation." 
Since there is thermal equilibrium in the undisturbed configuration, 

a aTo) ay ) a T o To ) .o (17) 
Ox _C 

+ o ad y + dz z. 
* KIRCHHOFF, 'Vorlesungen iiber die Theorie der Warme, p. 118. 
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8 Mi . J. H. JEANS ON THE STABILITY OF A SPTERICAL NEBULA. 

Hence equation (16) reduces to the form- 

apl T r a / T\ a / r\ a / a\ - M-- + eVl Ko Kor + K o 
" + (~ ( 

" 

ao ar x', a T 
- 

a, + <T0 VT' + a- + o . . (1 9), 

and, cleared of accented symbols by the use of equation (2), this takes the form. 

aKO aDT a 1 r r 
-- I+, Ko V2T,_ + - + Ki V2To 

a a e /a To aa,K 
- q { a (a- --a ' ) + 

K 
v .0;) + a v-TO} a r \ or ar j u \ r / 6r J 

- 2 a - a + K'.o - i To V ,o, ,. (20). or ororr- a l o,, a(' 
Now equation (17) can be written in: the form 

,,o ate 
, a, V2TO . . . . . . . (21), 

whence, by differentiation with respect to r, 

a /(a, a-( + 
+ ? /oo 

T-: )+ Ka V7;: + I V2l : 0. . . . . . (22). 

With the help of equation (22), thle bracket in the second line of (20) reduces to 

2% air 

while, with1 the help of (21), that in the third line becomes 

2%, aTo 
r aDr 

Again, if we substitute for KJ the value found for it in equation (6), the two last 
terms in -the first line of (20) can be trIansformled as follows: 

Dgl a1O - 
a ) 0rj + ID0 T T 

.c)a 0. + KV - CT o = 
; k2T/ D, 2 + Ko VTTo f 

and the last bracket vanishes by equation (21). 
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Collecting results, and substituting for p1 fromn equation (3), we find that equation 
(18) takes the formll 

A , I., 8l\ 11 [K3PAn , a /T1\ TO MpO -C-- - = 1 ali + Ko V2T+ -O Ko ( '2 ) 

_ KaToy (2 - +V j . . . (23).7' 

? 9. In addition to the volumle-equations which have just been found, there are 
certain boundary conditions which must be satisfied. These are as follows: 

(i.) The pressure nust remain constant at the outer surface, so that we must 
halve 

[Zl]r=--l = 0. 

(ii.) Th'e temperature must remain unaltered at r- = 1., or else the flow of 
temlperature across the surface r = Pt must remain nil. These two suppositions 
require respectively 

[TJ1J,R= O, or dl =0. 

(iii.) A similar temperature condition must be satisfied at r R R1. 

(iv.) The kinemlatical and dynamical boundary conditions at the surfilace r = R 
must be satisfied. These express that the normal velocities shall be continuous at 
this surface, and that the motion of the rigid core shall be such as would be caused 
by the forces acting upon it from the gas. 

? 10. Equations (14), (15) and (23) give the rates of change in u, A and T1 in terms 
of these quantities. Hence these equations enable us theoretically to trace the 
changes in t, A and T1, starting from any arbitrary values of u, A, T1, dcu/dt and 
cl/dt, which are such as to satisfy the boundary conditions. 

Ilagine initial values of u, A, T1, d/zc/dt and dA/ldt, in -which the latitude and 
longitude enter only through the factor S,, where S,, is any spherical harmonic of 
order n. Then it can be shown that the solution through all time (so long as the 
squares of the displacemlent Iimay be neglected) is such that the latitude and longitude 
enter only through the factor S,. For, assuming a solution of this form, the value of 
V' found in ? 6 will contain S,, as a factor, as will also pI, J, ' (equations 3, 5, 2) 
and X (equation 13). The same is true of V2X, V'Ti and V2u, since 

V'2 [f ( ) Si] - 2{ f _ (r fj ) . _( +S, 

* Sections 5-8 were re-written in November, 1901. I take this opportulnity of expressing my thanks 
to the referee for the caelde and trdouble whbe ichhe hl s bestowed i pofn my paper. To him I am indebted for 
several improvemlents in these four sections, in particular for the present forml of equation (2:3), and also 
for the removal of a serious inaccuracy froom my original equations. 

VOL. CXCItX.- A, ( 
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10 MR . J. H. JEANS ON TtIE STABILITY OF A SPHERICAL NEBULA. 

where f(r) is any function of r. It therefore appears that every term in- equations (14), 
(15) and (23) will contain S,, as a factor. Dividing out by this factor, we are left with 

equations which do not involve 0 and ~, and this verifies our statemenlt. 

? 11. It thereforei follows that there are principal vibrations` in which u, A and Tl 
are of the forml 

,', AS,_ei .......... (24), 

A = S,,e' .......... (25), 

T- = CS)e2i1 . . . (26), 

IIi which A, 13, C are functions of r only. The relations between A, B, C atnd p must 

be found fiomn the equations (14), (15), (23), and the boundary conditions. 
The value of p' fir the vibration just specified is 

p=p -? = - 
pt 

A + u' li) 
- d, + Bp,) Si p Pi q- Bp " ' 

We shall in future drop all zero suffixes, there beinlg no lonlger anly danger of 

confusion. Calculating V' after the manner explained in ? 6, we find (cf. THOMSON 

and TAIT, 'Nat. Phil.,' ? 542), 
'V= VS,nei, 

where 

V = () - {) {- f (A ? + Bp) i+d2 r- [A (p -cro) ir"'J, 

+ 1 r_ 2(2nP+TB) 
A +-J .+ B + (27). -(2mt + ,1) d-r c q p ;: - ' 

We have further, by equations (2) and (5), 

) 
= ( -. u = Xp (C - 13T) ,ei A Si ,e/, 

and hence we obtain (equation 13) 
X 

- 
S ,b1i/, 

F = - x (C - BTl) - ... (- 8) 

Substitutinlg the assumed solutions fo l' , Aa anid T1, aInd the corresponding --alues 

for X) P1, i1, in equatioins (14), (15) and (23), and dividing throughout by the factor 

S,,eit, we find the relations 

* In order to avoid circumlocution, we shall findc it convenienlt to use the telrms 1 principal co-ordinate " 

and "principal vibration," although we are ignorant as to whether the nebula is stable or unstable. It 

will ultimately be found that we only apply our results to nebulat which are either stable or in the limiting 
state of neutral equilibriunl 
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- 'p2A Bll 1_ d _X ,lp(C-BT) . . . (29), - cr p dr p 1d 

p- B-1 '7 (1 A)/ = ( ) F (30), 
di" dr ' - 

dMc B + c dOC + K [ cl / g dG\ + 1 C 1 , d f \ dT 
ipp(MpB + C0C) = - -- + J-(r -- - n(n +?)C}0 +K? i) - - - i 

'P( ' 
) d7ti ' r C7 ( )dr r J d, dr2 d 

dT 1 / cA 4 cA n( T, + 1) -2 
K- 

K \r i r^ 
- - 

- 
A A 

. (31). 

The boundary-equations found in : 9 reduce to the following:- 

(i) [C - BT1 ,,=1l . . . . . . . . . . . . .. . . . . . (32), 

(i,i) = 0= or [ =0. . . ............ (33), 

(iii) Equations similar to (33) at r= T R . ........ . (34), 

(iv) (A)Kr=l = 0, when n is different from unity, or a more complex equation in the 
case of -- 1 . . . . . ..(35). 

? 12. From the manner in which the analysis has been conducted, it will be clear 
that every principal vibration must either be one of the class just investigated, or 
else a vibration such that u, A, and T vanish everywhere. 

For the latter class of vibration there are no forces of restitution. Thus the 

frequency of vibration is zero, and the motion consists of the flow of the gas in closed 
circuits, this flow being entirely tangential, and the gas behaving like an incom- 

pressible fluid. Obviously these steady currents are of no importance in connection 
with the question of stability or instability. 

Discussion of the .Frequency Equation. 

? 13. Returning to the class of vibrations in w:hich u, A, and T do not all vanish, 
we have seen that the frequency equation is found by the elimination of F, A, B, and 
C from equations (28) to (35). Now p only enters into three of these equations; 
namely (31), in which it enters through the factor ip, and (29) and (30), in which it 
enters through the factor - po or (ip)%. Regarding ip, A, B, C, and F as unknowns, 
it will be seen that the coefficients which occur in equations (28) to (35) are all real. 
The four volume equations enable us to determine A, B, C, and F except for certain 

c 2 
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constants of integration, and the values of these quantities will be wholly real if ip2 is 
real. The boundary-equations enable us to determine the constants of integration 
and also provide an equation for ip. Every term in these equations will be real if ip 
is real. Hence the frequency equation can be written in the form 

f(ip)- 0, 

where f(x) is a function of x in which all the coefficients are real, these coefficients 

being functions of n and of the quantities which determine the equilibrium configura- 
tion of the nebula. 

It follows that the complex roots of IJ will occur in pairs of the form 

ip - y ? ib 

whlere y and 8 are both real. There nmay also be roots for which ip is purely real, so 
that 8 = 0, atnd y exists alone. 

The vibration corresponding to any root is stable ornn flstable according as y is 

negative or positive. 
If the equilibrium configuration of the nebula changes in a,ny continuous manner, 

so as always to remain an equilibrium configuration, the values of ip will also change 
in a continuous manner, and for physical reasons these values can never become 
infinite. Hence, if the configuration of the nebula changes from one of stability to 
one of instability, it must do so by passing through a, configuration in which there is 
a vibration for which y = 0. 

? 14. For the present we shall not discuss the actual stability or instability of any 
configuration, but shall examine under what circumstances a transition from stability 
to instability can. occur. 

We therefore proceed to searchl forl configurations in: which there are vibrations 

such that y - 0. Now for such a vibration we have either a root of the frequency 
equation p = 0, or else a pa,ir of roots of the form ip = + i 8. 

In the latter case the corresponding vibration is one in which a dissipation of energy 
does not occur. A necessary condition for such a vibration is that no conduction of 
heat shall take place. Hence both sides of the equation of conduction of heat 

(equation 31) must vanish. Excluding adiabatic motion (represented by the 

vanishing of the factor MpB- + C,C), this condition. compels us to take 

9 -= 0 

together with 

dcdr l 
, 

. >d C\) - (+1i ) + d (C \ dT 
d e { d V'- . 

n (n d l )} + (2 2 dr 

dT I d /dA) 4 dA i?(4> . A} 1) ( 
K l. f{e 

1- 
---?- 

. ' 
. ... 

A- _ O . (36). 
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Thus vibrations for which y = 0, if they exist, must satisfy equations (32) to (36), 
and also equations (29) and (30), in which p is put equal to zero, and equation (28). 

The case of n 0 will be considered later (? 28). Excluding this for the present, 
we find that putting p = 0 in (30) leads to 

F=0 . , . . . (37). 

Equation (29) now reduces to 

B + (C- T) 0 . . . .... (38), 

or, replacing -a by its value XTp, 

dr Bp-7:i (XrT) + X 0:o _- . ... .. . . (39), 
Equattion- (28) becomes 

V= X(C1-BT)-- .-.- -. (40), 

and tl:e elimlinaation of -- BT from this equation and (38) leads to th1e equation 

1V - (lp1d V= (A i+ Bp ......p (41). 
dr? : \ dr' i p dr v / 

Subsitutiing for V from equation (27), this becomes 

(2 { (A[ 7 + B>)r+ [A (p-l) r l (2n^ + 1) r^? 
i , B1 k\A -Ldi j 

47rr 41 RI dp __riA (p - 0 

=(A- + Bp) ;/i; ..... (42). 

? 15. With a view to transforming this equation, let us consiider the equation 

4n 4J71r 4 If 
(2( -J" Ir'n-+^t- KoB-+ (2'n $ 

?{5Kdr + K, = L (43). (2?' + 1) r{+. +02l R, , 

in which J and L are any functions of r, and K0, K.1 are constants. If we multiply 
by n'd1, and differentiate with respect to r, we obtain, after some simplification, 

^47T {| r+K.} 
j. + K(L. (44) 

while by multiplying (43) by r-2 and differentiating, we obtain in a similar way 

- ?I {|fR Jr2 dr + Ko}- (L-"). +. (, ) . (45). 

13. 
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Divide (44) by r' and differentiate with respect to r, then 

*^ J-:LJJ-- (-L+l, 
+ . 

)' (46) ''-i -- drr {.. \ j 
' e * / 

or, writing f for L, and simplifying 

das n'() + 1) 
d 

_ 
rlO 2iLl) 

^ _ 4 , (47), 

and this same equation coull have been deduced from (45) instead of (44). 
Equation (47) is m0ore general than (43) since the tiwo cotnfstatlis Ko, K1 have 

disappeared. In fact equation (47), being a differential equation of the second order, 
xwill contain two arbitrary constants in its solutionl, anid these correspond to the two 

missing constants Ko and K1. We ca1n, h1owever, determine K0, K:j in terms of 
these two arbitrary constants, and if these constan.ts are chosen so as to give the 

right values for K0, K1, the solution of (47) w-ill be equivalent to the ori-gnaln 
equation (43). 

To determine K0, K1, put r--= Rj in (44) anid we obtain 

41rK L,B i (. )J I * . . (48), 

and similarly from (45) 

A77K4o= 
U 

r-b-- (61 (61-lt]^ . ,. , , . e (49), 

Hence we see that equation (43) is exactly equixvalent to the tlhree equations 
(47), (48), and (49). 

? 16. Conparing (42) with (43), it appears that (42) is exactly equivalent to the 

following equations :- 

- x- A ;:-+ sp }; :/) ' ....... (5)0 
dr2. ~- +r/ ./ 1 ) 

4 - _ . 
(,? 

(A B 1n) . _ _ 
4_. wA ( Bpp (1). 

4~rKo-- [,,+ (- +')) = -(LA ro) 1 
] R' 

. (5:3). 

The right-hand member of (51) is equal to 

_ 
dp, /I d 1 
.dlr / p dr' 
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so that if we introduce a new quantity ut, defined by 

..= 2.p...... r. --'/7 (54), 

equation (51) may be written in the form 

lr2 {d n ( + 1)- 2ti} b. . . (55). 

The solutionl of tllis will be of the form 

-E d (,) + E|,,4. (,r) ........ (56), 

in which E1, E are constants of integration. We have, friom the definition of e, 

A, + Bp = - 21{E1 (r) + E. 
(1)} 

. (57), 

and the elimination of B from this equation and (39) gives 

X- C = (XT) A - 
2') + E ((} . . . (58). 

If we imagine this value for C( substituted in equation (36), we shaLll have a 
differential equcation of the second order for A. The solution of this will be of the 
formi 

A El,= i (i) + EfJ(r) + Ef ?E4(r) . . (59), 

in1 which LE cand 134 are the new conlstants of' integration:1. Firoin this value of' A we 
cattn (iuce the values of B and C (equatiotns (57) and (58)) without introducing any 
further constants of integration. 

T'urnling to the bounldary conditions, we now finid that there are six boundlary 
equations to be satisfied (equations (32), (33), (34), (35), (52), (53)) and oinly three 

arbitrary constaLnts at our disposal, lnamely, the ratios of the four E's. If we 

eliminate these E's we shall be left with three equations to determine the configura- 
tion of the nebula at which instability sets in, and these equations will in general'be 
inconsistent. 

? 17. In order to put the right interpretation upon this result, it will be necessary 
to return to the general equations of fiee vibrationis found in ? 12. 

If we elimaintate F fromi equations (29) and (30), we obtain 

1-5 
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PA +, :11 (r1 1B)- ) ( . (60) p,I ? A 
+ ; 1) dr?hg p i d + i/ ) 

Awhile equation (30) imay, with the helpl of (28), be wri;tteln in the foirm 

V ~j/,r . ... . . . . . . . . (61), 

in l which : is now defined by 

- X (p - (BT) -f 1-) B --(rA)} (62). 

Substitetiing for V fromi equation (27), and treating the equationl so fqrlumed in tlhe 
manner e-xplained in ? 15, we find, as the equivalent of equationL (61 ), 

(i) A volunle equation, analogous in form to (51), namely, 

t^^=-T4.r(Af-+Bp .A. .. + Bp (6 3). 

(ii.) Two boundary equations aniialogoous in foi to (52) and(5 (3. (4), (65). 

Tlhus the equations found in ? 11 may be replaced by 

(a) Three volume equations, namely, equations (60), (63), and (31). 

(f3) Six boundary equatiois, namely, equations (32), (33), (34), (35), (64), (65). 

We nmay conduct the elimination of B and C f iom the three equations (a) iln a 
symbolic manner as follows :- 

Let D,, be a symbol which is used to denote anry linear difftrential operator of 
order n, the differentiations being with respect to r The symbol has reforence 
solely to the order of the highest differential coefiicient which occurs, and 1must iln no 
case have reference to any particular differential operattor. Thus we write D,, 
indiscriminately for every operator of the form 

(r) . +4- f (- ) a-- ? 

The laws governing the manipulation of this symbol'are as f'ollows 

(i.) - 1),4 , 5= -9/,, 

(ii.) - 'D,4 _ 1)--,; ({n > v/) 

(iii.) D, (l.),,?) '= ;+),/ 
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It nmust be particularly noticed that in general 

D,, - D,,D = D-^,. 

Corresponding, however, to any two specified operators of order n, say (D11)1 and 

(D,),, it will always be possible to find two functions of r, say a and b, such that 

a (D,r) o- t (D,)th == D1the ..... . ( 66). 

In terms of this operator, the three equations (a) (p. 16) may be written in the 

following forms: 
p (DA + DB) + DB + DoC ̂  O . . (67), 

D2A + D,B + D2C + p2 (D3A + D,B) O 0 ..... (68), 

ip (DoB + DoC) + D2C + DDA =0 ....... (69). 

Now D,, is commutative with regard to functions of r, and is of course commutative 
with regard to p. This enables us to eliminate B and C from the above equations. 

To make this clearer, consider a simple case, say the pair of equations 

D,A= DB . . .......... (70). 

D1A =p2D,B .. . . ... (71). 

If we operate on (71) with dj/dr, we get an equation of the form 

D,A = p2Dm,+B, 

and from this and equation (70), we can, with the help ot the property expressed in 

equation (66), deduce an equation of the form 

D1A= D,iB + pD B. 

From this and equation (71) we can in a sirnilar way obtain an equation of the form 

DoA = D,B + p'2D+,B. 

We may regard this as an equation giving A, and substitute for A in (71). In this 

way we obtain 
D,)+ B + p2D,B -- 0 .. ... (72), 

and the elimination of A has been effected. 
It will be clear that throughout this elimination we have followed a method which 

would have been successful in eliminating A if d/dr had been regarded as a mere 
multiplier. The result of the elimination is accordingly exactly the same as might 
have been obtained directly from the original equations (70) and (71), by regarding 
the D's as multipliers and eliminating according to the ordinary laws of algebra. 

VOL. CXCIX.-A. D 

17 
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It will now be apparent that we can elini-nate any t wo of the three unknowns, A, 
B, and C, from equations (67)-(69) by this method. The differential equation satisfied 

by the remaining unknown (say A) will be 

AA- 0 ........... (73), 
where, symbolically, 

p p2D, Ip2D1 + Do, D 

A- p2D3 +D2, +D22AD 2 )2 + D. . (74). 

ID2), ipIDo, .iDo + D. 

We may expand this determinant according to the rules already laid downr for the 

manipulation of the D's, and so obtain 

=ip pD4 + D6 + tip3pD4+ + iP2 D+ .4 (75). 

? 18. We can now see the explanation of the difficulty which occurred in ? 16. 
The occurrence of the term D6 in A points to a differential equation of the sixth 

order, which is satisfied by any onie of the quantities A, B, or C in the general case, 
in which p does not vanish. As soon, however, as p is put equal to zero, the 

expression for A reduces to ID4, and the differential equation is one of the fourth order 

only. It therefore appears that by putting p =0 before solving the differential 

equations, the order of these equations is reduced automatically, and two solutions 
are entirely lost from sight. 

These two last solutions, it is easy to see, are solutions Twhich do not approximate 
to a definite limit, when p approximates to zero. The remaining four solutiols will 

approximate to the same forms as would be obtaiiled by putting p == 0 before solving 
the differential equations. Thus, instead of equation (59), we must write the complete 

limiting solution for A in the form 

L,, A = Elf (r) + E E f (r)+ E3A () E (r) + l E5 f (, ) p/ ) + EJ6 (r, p) . (76). 
p=O 

* I have not found it possible to investigate the form of these two last solutions in the general case, but 

it is easy to examine the nature of the solutions at infinity, when the nebula extends to infinity, and this 

enables us to form some idea as to the general nature of the solutions. Suppose that at infinity we have 

L, 1 d, dc 
X 

+ ;s. . Lt - -I-- = + a2r- 
ro Xp dr dr 

in which a is real, then it can be shown that A = (r, p) A', &c., in which A', B', C', are functions of 

r only, and 

(r, p) - 
E5 cos (2 Jn l(n + Is) r-12/isp) + E si (2 jn ( 

+ 

1~) ~S 2/ sp) 

when the negative sign is taken in the above ambiguity, the circular functions being replaced by hyperbolic 
functions when the positive sign is taken. The value of ip is wholly real when squares of ip may be 

neglected (cf. ? 13). 
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If we deduce the values of B and C from the solution (76), and substitute in the six 

boundary equations the values so obtained, we shall be left with six linear and 

homogeneous equations between the six E's. Eliminating the six E's, we have a 

single relation between n, the constants of the nebula and p. Now it will be seen 
that it will always be possible to pass to the limit p = 0 in this equation, since this 
amounts only to finding the ratio of the values of f5 or f6 at the two boundaries. 
The equation obtained in this manner will give us a knowledge of the configurations 
at which a change from stability to instability can take place. 

? 19. It therefore appears that it is not sufficient to consider vibrations of frequency 
p = 0 as represented by positions of "limiting equilibrium." The method of 
POINCARO1 for determining points of transition from stability to instability is not 

sufficiently powerful for the present problem; indeed it appears that it is liable to 
break down whenever there are boundary-equations to be satisfied.t 

It is of interest to notice that this complication is not (as might at first sight be 

suspected) a consequence of our having taken thermal conductivity into account. 
For we can put C = 0 and remove the equation of conduction of heat without causing 
any change in our argument, except that the right-hand member in equation (74) must 
be replaced by a determinant consisting only of the minor of the bottom right-hand 
member in the present determinant. The value of A is now 

A -p2 D + D,, 

and the number of boundary-equations is of course educed fromn six to four. . Thus 
an exactly similar situation presents itself, although we are now dealing with 
a strictly conservative system. 

The consequences of this result are more wide-reaching than would appear from 
the present problem, inasmuch as all problems of finding adjacent configurations of 

equilibrium are affected. For instance, it appears that an equilibrium theory of tides 
is meaningless except in very special cases (e.g., when the elements of the fluid in 
which the tide is raised are physically indistinguishable). 

If we attempt to calculate by the ordinary methods the tide raised in a mass of compressible fluid by 
a small tide-generating potential, we reach a number of equations which are (except in special cases) 
contradictory. To take a simple case, suppose we have a planet of radius Ro covered by an ocean of 
radius R1, the whole being surrounded by an atmosphere which maintains a constant pressure r at the 
surface of the ocean. Let the law of compressibility be r = cp, where c varies from layer to layer of the 
ocean. Let the tide generating potential be ao0rIS,. Then the equations of this paper will hold if we 
write p = 0, C = 0, ignore the equation of conduction of heat, replace XT everywhere by c, and include in 

' Sur l'Equilibre d'une Masse fluide ...."-' Acta. Math.,' 7, p. 259. 
t There is not, of course, a flaw in PoINcARI's analysis, but he works on the supposition that the 

potential-function is a holomorphic function of the principal co-ordinates, and this supposition excludes a 
case like the present one. 

D 2 

19 
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V a term aorn. Equation (39) gives (except in the special case of c = constant), B = 0. Equations (50) 
and (51) remain unaltered, and give a solution of the form 

A = Elf (r) + E2f2(r). 

Now we must have A = 0 when r = Ro, and this determines the ratio El/E2. Also equation (49) must be 
satisfied, and this leads to a second and different value for E1/E2. 

A second example, of less interest but greater simplicity, will perhaps help to elucidate the matter. 

Imagine a non-gravitating medium in equilibrium under no forces inside a rigid boundary. Let the law 

connecting pressure and density for any particle be = Kp, where K varies from particle to particle. In 

equilibrium - has a constant value ro0. Suppose now that we attempt to find an adjacent configuration 
which is one of equilibrium under a small disturbing potential V. The general equations of equilibrium 
are three of the form 

dV 1 dwr 
dx p dx ' 

If the position of equilibrium only varies slightly from the initial position, dr/dx will be a small quantity 
of the first order, so that (to the first order of small quantities) p may be replaced by its equilibrium value 

'O/K. We now have 
dwr _ 0 dV 
dx K dx ' 

and therefore, since r is a single-valued function of position, 
1 

dVdsO O . . . . . . . . . . . . . . (i.), 

the integral being taken along any closed path. Since V and K are absolutely at our disposal, this 

equation is, in general, self contradictory. What we have proved is that there will only be an " adjacent" 
configuration of equilibrium under a potential V if V is a single valued function of K, a condition which 
will not in general be satisfied by arbitrary values of V and K. 

It is not difficult to see the physical interpretation of this last result. There were initially an infinite 
number of equilibrium positions, and therefore an infinite number of vibrations of frequency p = 0. To 
arrive at the configuration of equilibrium under the disturbing force we must imagine vibrations of 
frequency p = 0 to take place until equation (i.) is satisfied; the disturbed configuration will then differ 

only slightly from the configuration of equilibrium. For instance, if the disturbing field of force consists 
of a small vertical force g, the fluid must be supposedl to arrange itself in horizontal layers of equal density, 
before we attempt to find the disturbed configuration. 

The interpretation of the result obtained in the first instance is similar, but more difficult. Consider 
a linear series of equilibrium configurations, obtained by the variation of some parameter a, such that the 

spherical configuration of our example is given by a = 0. The other configurations are not symmetrical, 
the asymmetry being maintained, if necessary, by an external field of force. Every degree of freedom in 
the configuration a = 0 must have its counterpart in the configurations in which a is different from zero. 
In particular, the principal vibrations of ? 12, in which (for the configuration a = 0) the dilatation, normal 
displacement, and temperature-increase all vanish, must have counterparts for all values of a. But when 
a is different from zero, the above three quantities cannot be supposed to all vanish. In general, therefore, 
these degrees of freedom provide solutions of the volume-equations, and these solutions contribute to the 

boundary-equations. In the special case of a = 0, these solutions do not affect the boundary-equations at 
all, so that to rectify the boundary-equations we must, so to speak, take an infinite amount of these 
solutions. In other words, the complete vibration of frequency p = 0 becomes identical with one of the 
vibrations of ? 12, in which u, A, and Ti all vanish. 
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An Isothermal Nebula. 

? 20. Let us now examine the form assumed by our equations in the simple case in 
which X and T are the same at all points of the nebula. We find that, considering 
only the equations for the case of p - 0, equation (39) reduces to 

C0= . . ...... . (77), 

and, in virtue of this simplification, the equation of conduction of heat (36), and the 
two thermal boundary conditions (33 and 34) are satisfied identically. We are left 
with equation (55) to be satisfied throughout the gas, and equations (32), (35), (52), 
and (53) to be satisfied at the boundaries. 

The solution of equation (55) is given in equation (56). Now we must satisfy 
equation (32) by taking B = 0 at r = R1, and this, by equation (50), gives the value 
of A at r = RI in terms of Ej and E2. Hence equation (52) reduces to a homo- 

geneous linear equation between E1 and E2. 
When n is different from unity, we satisfy equation (35) by taking A= 0 at 

r = Ro, and this reduces e(uation (53) to a homogeneous linear equation between 

E1 and Eg. 
When n = 1, equation (35) reduces to a linear equation between (A),Ro, E1 and E1 . 

Equation (53) is a second equation of the same form, and the elimination of (A)r=R, 

from these two equations leads to a homogeneous linear equation between E1 and E~. 
Thus, in either case, we see that the whole system of equations reduces to a pair 

of homogeneous linear equations between E1 and E2. The elimination of these 

quantities leaves us with a single equation between n and the constants of the 
nebula. 

We can, therefore, satisfy all the equations for a vibration of frequency p -0= by 
imposing a single relation upon the constants of the nebula. The unknown solutions 
which are multiplied by E5 and E6 have not been taken into account at all, but since 
the condition that there shall be a vibration of frequency p = O must of necessity 
reduce to a single equation, it will be clear that if these solutions had been taken 
into account, we should have found it necessary to take E, = Eg = 0. 

Thus, in the case which we are now considering, a vibration of frequency p = 0 
is equivalent to a configuration of limiting equilibrium. It is not hard to see that 
this results from the fact that the particles of which the nebula is composed are 

physically indistinguishable. This very fact, however, introduces a further complica- 
tion into the question. It will be noticed that, although the value of : has been 
found at every point of the nebula, it is impossible to determine the separate values 
of A and B. On the other hand, the physical vibration must have a definite limiting 
form when p = 0. Now it is easy to see that a motion of the gas in which 

s vanishes at every point of the gas, and in which A and B vanish separately at the 

21 
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boundary, will, in every configuration of the gas, satisfy our equations with p = 0. 
Such a motion, in fact, simply leads to a configuration which is physically 
indistinguishable from the initial configuration, and in which the potential energy 
remains unaltered. The motion which we have found from our equations is the sum 
of a mlotion of this kind, and a true limiting vibration. It is impossible to separate 
the two motions, except by considering vibrations of frequency different from zero, 
but fortunately the question is not one of any importance. 

? 21. Let us now attempt to form the final equation in some cases of interest. The 
equations of an isothermal nebula at rest under its own gravitation have been 
discussed by Professor DARWIN.- Our function u (equation 54) is given, in the case 
in which the nebula is isothermal, by the equation 

27rpr7 
T .. . . . . . . . . (78), 

and it will be seen that this is the same as the u olf Professor DwAR I r's paper. It 

appears that in general u cannot be expressed as a function of r in finite terms, but a 
table of numerical values of u is given. t The value of u approximates asymptotically 
to unity at infinity, so that at infinity p varies as I'-T. DAxnwN'S nebula extends 
from r = 0 to r = o , but it is obvious that we may, without disturbing the 
equilibrium, replace that part of the nebula which extends from r = 0 to r =- R0 by 
a solid core of mass equal to that of the gas which it replaces. We may also remove 
that part of the nebula which extends from -r = RI too r. = 0o, if we suppose a pressure 
to act upon the surface r == R1 of amounit equal to the pressure of the gas at this 
surface. We may suppose the medium outside this surface to be of any kind we 

please, but as it has already been pointed out that tlhe pressure can, in nature, only be 
maintained by the impact of matter, we shall sulppose that this mlatter is of a density C 

whlich is continuous with the density p of the nebula at the suIrfice of separation. 
We may now write equation (52) in the silmple form 

K(Lr j.) =0 . . .R. ?. (79). 

We have, up to the present, supposed the nebula to be acted upon by a spherically 
symmetrical system of forces in addition to its own gravitation. Now it is essential 
to the plan of our investigation that we shall be able to make the configuration of the 
nebula vary in some continuous manner, and this compels us to retain this generali- 
sation. We shall, however, suppose that when the nebula extends to infinity, 
u retains some definite limiting value u,, thus including the free nebula as a 

special case. 

G. H. DARWIN, ' Phil. Trians.,' A, vol. 180, p. 1. 

f Loc. cit., p. 15. 
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? 22. Let us, in the first place, consider the "(series" of nebulae such that u has a 
different constant value for each. This series includes a single free nebula, for it 

appears from DARWIN'S paper that there is a nebula such that u = I at every point. 
This nebula, it is true, has infinite density at the centre, but this objection disappears 
when the innermost shells of gas are replaced by a solid core, the mean density of the 
core being equal to three times the density of the gas at its surface, and therefore 
finite. Let us, in the first instance, simplify the problem by supposing that the core 
is held at rest in space. The boundary equations (35 and 53) which have to be 
satisfied at r = R0 now take the forms 

(A)r=Ro=0 ... (80), 

d;r(& , 0. .... (81), 

independently of the value of n. The value of u in equation (55) being now 
independent of r, we may write the solution (56) in the form 

f E1, + E2r~' ....... . (82), 

in which FA, p' are the roots of the quadratic, 

t(t- )=n( + l) -2 ........ (83). 
We accordingly have 

4 I - 1; - 
' --= 2 /(r + ) - 2; t' = - n (n + 1) + 2 , (84). 

Equation (79) now takes the form 

E1 (p + n) R,I+-1 + Es (i + n) Rl'+"-1 0 . . (85), 

while equation (81) becomes 

E ( -n - 1)r E-1-2 + E ( -' f- n- ) Io'-?-2 = o . . . (86). 

The elimination of El and E. from these equations gives 

Ro -~_ (Ax + n) (/ -- 1) 
- 

.7 - ) 
k-O! -( +n)( ff1) * 

The fraction on the right hand canl be simplified by the help of equations (84); it 
is equal to 

2( (n+ -)2) + (- ')(m+ -) 
2 (v- ( 

+ 

?)) _ (+- 2 ' ) ( n, + n ) 

Now the left-hand member of (87) may be replaced by 

cosh {I (, -- ') log (Rj/Ro)} + sinh { ( - k/') log ((R/Ro)} 
cosh {- (/ - p') log (R1/R0)} - sinh {I (/ - t') log (R1/Ro)} 

23 
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so that the equation itself reduces to 

4-tnh(llll, { EA,j2 (1 ) A n/n0); I " ) (n + ) 
~tanh {^~ (^i - /) log (RE o)} 

= 
- (n 14)2 

(88). 

This equation expresses the relation which must exist between -1/Tl^o anld a - ' 

(or, what is the same thing, between R1/RI and u), in order that p -= 0 may be a 
solution of the frequency equation. 

? 23. We shall be able to interpret this equation most easily by adopting a 

graphical treatment. If we write 

2 ( n +) n 
-I (~-/Y, y^-: ^ -- ~)-+, / - / tanrh i,/ log (l,/Ro), Ix0I }& k,~)2) Y, X + (' 1x+2 Y(n? I 

then the equation can be written in the form 

YI == ,/2 
It will be noticed that y2 remains real when x is negative, an equivalent expression 

for Y2 being 

y 
- = - tan - x log (Ri/lo)} 

The roots of equation (87) are now represente ld by the intersections of the graphs 
which are obtained by plotting out y, and y, as funlctions of x. These two graphs 

0 

Fig. 1. 
Fig. 1. Fig. 2. 

are given in figs. 
sake of clearness. 

that for y, can be 

1 and 2 respectively, the graphs being drawn separately for the 

The graph for y, is, of course, the same for all values of Rl/RP0; 
varied so as to suit any value of Rj/RO by supposing it subjected 
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to an appropriate uniform extension parallel to the axis of y, and contraction parallel 
to the axis of x, or vice versa. Similarly, different values of (n + c) can be 

represented by contraction and extension of the first graph. 
If we imagine these two graphs superposed, we see that there cannot, under any 

circumstances, be an intersection in the region in which x is positive, i.e. (equation 
(84)), for a value of u less than 2- ('n + I-). The lowest value of uL for which an inter- 
section can possibly occur is zt = 1, and this occurs only when RI/R - = oo. As RI /Ro 
decreases from infinity downwards, the lowest value of it for which an intersection 
occurs will continually increase. Whatever the value of R1/110 may be, there are 

always an infinite number of intersections in the region in which u > I 
(n + 4-)2. 

The values of tu found in this way determine the "points of bifurcation" oii the 
linear series obtained by causing u to vary continuously. Thus we have seen that as 
u conltinually increases the first point of bifurcation of order n is reached when it has 
a value which is always greater than - ('n + ?-). When RI/R() is very large, the first 
point of bifurcation is of orderl n = 1, and its position is given by 

u l}1 . . . .. . . . . .. (89). 

? 24. Let us, in future, confine our attentioni to the case il whllichl Rl/lR is very 

large. If we gradually remove tlhe restrictiol that i is to be independent of r, the 
various vibrations of frequency p == 0 will vary in a continuous mann:er. Equation 
(55) remains unaltered in form, and, at infinity, it assumnes the definite limiting form 

r2 = {( + 1)2 . .2. . . (90), 

where uo is the limit (supposed definite) of t at infinity. It therefore appears that 
at infinity the solution for e approximates asymptotically to that given by equatioli 

(82), if /, I' are now taken to be the roots of 

t t 1) -= n (n - 1) -- 2, X ....... (91), 

Equation (85) accordingly remains unaltered. Equation (81) takes a form which 

is no longer represented by equation (86(), but which will iimpose some definite mratio 

upon El and E,. It is therefore clear that when Rt1 is very great, equation (85) can 

only be satisfied, at any rate so long as /~ and t/' are real, by taking K/ - -' very 
small. Thus a point of bifurcation will again be given by u /- 0, our previous 

investigation sufficing to show that this gives a genuine solution to our problenm, and 
does not correspond to an irrelevant factor introduced in the transformation of our 

equations. This point of bifurcation is moreover the first one reached as u increases, 
since it is at the point at which /, p' change friom being real to being complex. 

VOL. CXCIX.-A. E 
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We concludle tllhat, indclependently of the values of' u at points inside tile nebula, 
the smallest value of u.t for which a vibrCation of zero frequency and of order n is 

possible is given by 
-,? 2 ( + ) . t . . . e . . . (92), 

o o, for all orders, is given by 

Z t - 1 - ;.-: k . , r . s (93), 

tlhe lilitiig vibiration being of order nt 1. 

It ought to be noticed that for this limiting vibration equation (82) fails to 

represent the solution owing to /L and /' becoming identical. The true solutions for 
real, zelo, alnd imaginarya values of / -? may be plt respectively in the formns 

Cf ' c,/ sinh { ( -/) log 4E}, 

f -C, G,/r log ellt, 

= C sin ' ( - /')0 og et:l} 

in Twhich C( and c are constan ts of integration. 
At infinity p vanishes to the order of 1/r2, so that dp/cd= -- 2p/r. The value of 

f for very great values of r is therefore (equation (50)) 

-= XT(- 2A + B.r). 

At the outer boundary a surface equation (32) directs us to take B = 0. 

Following tlis out, we find that at infinity A is of the same order as e, and therefoire 

becomes infinite to the or(ler of V/r. Suppose, on the other hand, that we start by 
taking A = 0, so that B s=/XTr. The value of B now vanishes at infinity to the 

order of 1/I/rA, anld the surface-equation (32) is satisfied by a motion which vanishes 
at infinity. It would therefore appear to be easier to satisfy the boundary conditions 

when r is actually infinite than when) r is merely very great. This result opens up a 
somewhat difficult question, which will be considered in the next section. 

Before passinig on, we imay conlsider in what way the Iresults which have already 
beetn obtained will be mnodifiecld, if we suppose the cotre of the nebula to be free to 
move in space, instead of being held fast. For the free nebula u, =- 1, so that our 
results show that a firee nebula will be stable if the core is supposed fixed. The 
samre must therefore obviously be true when the core is free to move, since a motion 
in -which nebula and core move as a single rigid body will not influexlce the potential 
energy. When the nlebula is not free, fixiing th-e core mlay be regarded as imposing 
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a constraint which does no work; freedom of the core therefore tends towards 

instability. It will be proved in ? 28, that a nebula is stable for values of u, which 
are less than the critical value, and unstable for values greater than this value. 

Assuming this for the moment, we see that a nebula in which the core is free to move 
must necessarily be unstable if ut has a value greater than 11S. 

If then, we start with a free nebula and imagine zui to gradually increase from 
u = 1I upwards, the core being free, it follows that the nebula will first become 
unstable when 'tn, reaches solme value such thlat 

1 -> ,, > 1 ...... .. . . . (94). 

? 25. The nebula extending to infinity, let us attemlpt to find the displaceiment 
which will be caused by a small disturbing potential v,, giveln by 

4rr { ,a0 1ir),). " 
9i 

- 

{i +2 
' 

} S,. .. . . ..) 

It is clear that the displacement required will be given by our equations if we 
include in V (equation (27)) the terms 

47J L 4. r ,,4 
2_, + 1 +r" . 

The equation replacing (42) may be transformed in the manner of ? 15, and the 
resulting equations will be those of ? 16, except that we must replace (52) by 

K[i (.,) ai .....[A * (96), 

and (53) by a similar equation. 
If a displacemeint carl be found to satisfy thlese modified equations, the external 

disturbing potential which will be required to hold the system in this displaced 
position will be given by equation (94). Now the condition that this displaced 
position shall be one of limiting equilibrium is that this dCisturbing potential must 
vanish. To be more precise, ,, must be such that the force derived from it vanishes 
at every point of the nebula. We must therefore have 

a1r _ 0 

at all points of the nebula, including r = IR. Now (95) may be regarded as an 
equation giving cT in terms of Il. Taking p = o-r, as before, we find fi:om (95) 

b tin = gl ri [,r (of)] , 

E2 

27 
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and this vanishes at all points, inlluding r _== -, in the ca'se in whichl R1 is put equal 
to infinity, if 

L - _o .......... (97). Li/ 0 - (9 7). 
?' =o -X 

The condition that ao/r?'+ shall vanish at every point would lead to a similar 

equation to be satisfied at the origin, if there were no core. If, however, we retain 
the core, it leads to the same equation as was foun d in ? 22 (equation (81), when the 
core is held at rest). Thus, our present method of finding a position of limiting 
equ-1ili)lriumn h.as led to a result (ldifferent fromn that ob-tainled by the search for a 
vibration of zero frequency, in that equation (97) replaces equation (79). 

The value of ~ at infinity is given. by equation (82); hence we have 

L; [E-p- 1 p'' Ey ]'-,,, . O . . . . (98). 
' :: -,--9J /] 

As before, the equation to be satisfi:ed at r o I_) d,etermines te ratio ot' EJ to E., : 
equation (97) is therefore satisfied if the real parts of lp a,nd p.' ! are each less tlhanl 

unity. Now / ., pj' aire the roots of' equation (91), hence this colndition is satisfied 

provided 

(n 1) < 2 ..... .... (99). 

? 26. Let the kinetic and potential energies of a small displacement be given, in 
terms of the principal co-ordinates, by 

2T =-- aCl2 - cx+ Z,2 . . 
2V= bLxl2 + b2 x + . . 

so that the equations of motion are 

acx, -- b1x = 0 

&c., and pI is given by 
a1p-- .;...... (0 0). 

The method of ?? 20-24 amounted to finding vibrations such that p - 0, and 

therefore, by equation (100), solutions of 

61 o . ...... ( 0 1). 

In ? 25, on the other hand, we started with the supposition that the nebula extended 

to infinity, so that all the quantities a and b are liable to become infinite. The 

equation giving vibrations of frequency p = 0 is no longer equation (101), bult is 

I,t L 

o 

. . . . . . . . . . (1 02) 
and t a 

an:Ld this is obvi;ously m)-ore general thani equation (101). 

28 
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It will be noticed that the method of ?? 20--24 is the mnethod which is mathematically 

appropriate to the case of a nebula enclosed in a surface maintained at constant 

pressure, while the method of ? 25 is that appropriate to an infinite nebula. In the 
former case, a vibration of frequency p = 0 may represent a real change from stability 
to instability; in the latter case such a vibration leads to an adjacent configuration of 

equilibrium, and is, in this sense, a point of bifurcation, but does not denote a change 
in the sign of A2. 

IThe General Case of a Neblta rextcending to IfJinity. 

? 27. The method to be followed has been explained in ? 18. The general 
differential equation is of the sixth order. Four solutions have definite limiting forms 

when p = 0; the remaining two take singular forms. The former have been examined 
in . 16; the latter are represented mathematically (p. 18) by fnctions whichl do not 

a.pproach). a definite limi;t as 1p a)pproaclhes az xzeo value, faldtl physicaflly (p. 1..) by 

systems of steady currents. 

Theme a're six c(onstantis of integr-atiotn, ij4 E , E3, E,1,, 0E, Ej, of which the two last 

belong to the singular solutions. Let us suppose (as is always possible (p. 19)) that 

the ratios of these six constants are determined fiom five of the boundary-equations, 
that which is not used being the equation satisfied by e at the outer boundary. This 

remaining boundary-equation now takes the form (cf. equation (56)) 

El(, (R,) + E+ E2 (R-) + E0L (P) + E606 . (03) 

in which the four E's are definite quantities. The four Oi's must have definite 

limiting values (zero and infinity being included as possible values) when RE =1 o 
Thus in equation (1.03) some terms must preponderate over the others. W:len the 

nebula is isothermal, these terms are the first two. Hence, when the nebula is not 

isothermal, it follows from the principle of continuity, that the same two terms must 

still preponderate, at any rate for some finite domain including the isothermal 
nebula. Otherwise it would be possible to change the stability or instability of 

a nebula by an infinitesim.al change in the physical constitution of the nebula. 

HIence throughout this domain, equation (103) must reduce to its first two terms, 
i.e., must become formally the same as in the case of the isothermal nebula. But 

the solution for e (and therefore the functions fr, - 4), remain formally the same in the 

general case as in this particular case, and therefore the stability-criterion derived 

from equation (103) remains formally the same. 
It follows that whether the nebula is isothermal or not (provided always that the 

configuration lies within a certain domain of equilibrium configurations) the critical 

configurations are given by the two equations (92) and (99). 
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Exchange of Stabitities. 

28. We have now completed an investigation of the configurations at which 
a transition from stability to instability- can occur, as regards the spherical form, for 
vibrations of orders different firom zero, It is unnecessa,ry to discuss vibrations of 
order n u= 0, for the bollowing reason. 

Our problem is to determine the changes in the configuration of ai nebula whicl 
will ta'ke place as thel nebula cools, startinlg from.l a. splherical configuration, supposed 
st;able. We are not concerned with the succession of sph)erical configurations, bnut 

only with an investigation of the conditions under which a spherical configutration 
becomes a physical impossibility). Now a point of bifurcation of order n 0 does 
not indicate a departurle from the spherical configuration. It indicates a choice of 
two paths, one stable and the othler iunstable, andi the configurationrs on 1both paths 
will remain spherically symmetrical. 

We have therefore determ.ined allreadv the circumstances lunlder- which a tranisition 
from a synmmetrical to aln unsyl:metrical configuration can occur. It remains to show 
that there is, in efflect, ain exchange of stabilities at a point of bifurcation, and to 
examine on which side of the point of bifurcationrl the spherical configuration is stable. 

We are going to prove that the spherical conlfiguration is stable for all values of ut 

less than ua,o the lowest value of u at which a point of bifurcation of order different 
from zero can occur. Our method will be as follows : Any two equilibrium configura- 
tions catn be connected by a continuous linear series of equilibriulm configurations, and 
u will vary continuously as we move alolng this series. If one of the two terminal 

colnfigurations is stable, aLnd if thee linear series can be chosen so that u (loes not at 

any point of it pass through a value for which a viblratiot of frequenlcy p = 0 is 

possible, then we know that the other: terminal configuration is also stable. 
The value of y, the gravitation constan-t, Ihas been taken equatl to unity. If this 

constant is restored, the value of u becomles (equation (54)) 

- dp Id- 
U = a-ryp) / 

Since c ' = XTp, we have 

dm, d r- d,'p 
7 P 
-- 

(7 {XT) + XA-1 T 

For ain infinite nellbula, the first tesrm on the right-hand- of this equation will 
va:nishl at infllity in colparison with the second. lenc e ehave as the 
value of %t 

T- 2 7r(0ypr0 

_ 

- 
* 

.... ... (104). 
Li 2- iQrwr` 
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If we write y = 0 we pass to the case of a non-gravitati.ng nebula, and we see 
that ,- = 0 provided the ratio of pr2 to XT remains finite at infinity. Now we can 

keep the value of p and XT' the salme at every point by subjecting the nrebula to 
an appropriate external field of force, and this field of force will be exactly the same 
fas the gravitational field which was annihilated upon putting y = 0. It is spheri- 
cally symn'metrical, a-nd its potential vanlishes at infinity to the order of i1/lr, so tlhat 

it comes within the scope of our previous analysis. For values of y intermediate 
between the natural vall.ue (y = 1) and thlle value y = 0 wAe can obtain the slamle 
result by taking a field of force equal to 1 - y times the foregoing. As we increase 

y front 0 to 1 we obtain a linear series, in which the configuration of the nebula 
is unaltered, the nebula being gradually enldowed with the powiier of gravitationl. 

For the genleral configuration of this series, coinsider the work done in a. specified 
(lisplacement, which is proportional to S,, at every point. The potential (gravitational 
+ that of external field) after displacement will be of the form 

a + b,yS,,, 

where a and b are functions of r' an:(l independent of' y. The total work clone against 
this field during the displacement is therefore of the form 

By, 

where B is independent of y anid depends solely VupoQn thle particular displaceimelnt 
selected. The work done against the elastic forces is of course independent of y, 
and (lepends solely upon the displacement selected. This work is essentially positive. 
The total work is therefore of the form 

A + By, 

where A is positive and B may (? 2) be negative. Since y is proportional to ur, this 

may be written 
A + B . ........ (105). 

Suppose this function calculated for all possible displacements. Then we shall find 
that for values greater than somle definite value of u, it is possible for t]he work 
done to become negative. For values of u, less than this critical value, the work 
will be positive for all displacemienits. Hence fromn the form of expression (105) 
it fbllows that the passage of u?, through a critical value deltotes ta real chanlge friom 

stability to instability, -trand thallt the stable config.urations arIe given by the srnialler 
values oYf '. 

Recapitbulation and Discussion of Restults. 

? 29. We lave seen that the vibrations of any spherical nebula may be classified 
into vibrations of order-s n = 0, 1, 2, &c., al vibration of any order vn being such that 
the displacement and cllIlige in temperature at ny poil:t are eacl)1 proportional to 
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some spherical surface harmonic S, of order n. The frequency of vibration is 

independent of the particular spherical harmonic chosen, depending only upon the 
order n. 

The vibrations of order n - 0 have been seen to be of no importance; the stability 
of the vibrations of orders different firom zero has been discussed, in the limiting case 
in which the nebula extends to infinity, with the following results:- 

Starting from any stable configuration of spherical symnmetry, the vibrations of' any 

order? n, different from zero, all remain stable unltil the function u., defined by 
equation (104), passes through a certain, critical value. In any case this critical 
value is first attained for a vibration of order n = 1. 

For a nebula which actually extends to infinity, the critical value is nt, , 1. 
Whten this value is reachled we come to a secondl series of equilibrilumn configuratiolls, 
the form of which will be investigated later. If this value is passed, the configura- 
tion r emaining spherical, there will not be vibrations in which the time enters 

through a real exponential factor, because the critical vibrations remain of' frequenl;cy 
p = - 0, the inertia of the nebula being infinite. 

If the radius R1 of the nebula is regarded as very great but not infinite, this 
statement is not true, since the inertia cannot now become infinite. In this case the 
first new series of equilibrium configurations is again reached when (Ut)r,il attains a 

certain critical value, and the critical vibrationl is again of order n =- 1. 'The critical 
value of (u),=, has not been calculated, bulit wheln It1 becomes infinite, it lias a 

limiting value which has been shown to lie between 1 and il-8. 

Taking y = 1, we have as the value of u,, 

The question of stability turns entirely upon the value of this function, wlhich mLay 

appropriately be termed the "stability-function." 
We now see that the whole question of stability depends upon the ratio of the 

density to the elasticity at infinity. This result is not hard to understand. In the 

f:irst place, since the nebula extelnds to infinity, wve may, so to speak, nieasure it uponl. 
any lilnear scale we like. If we measure it onl a sufficiently great scale, the :nebula, 
still remtains of iinfinite extent, )buti t tle variationl s in temrnperature or structure ulwhich 
occur near t he centr-e can be mlade to appear as small cas e wisll, ed thle solid core 
can be made to appear as insignificant as we wish. Thus by measuring any nebula 

upon a sufficiently great scale we can mnake it app(-tear inldistinguishable from an 

isothermal nebula, and the critical vibration for which ) =- 0 does not disappear from 

sight, since in the limit this vibration (measured by O/r) remains finite at infinity. 
Further, as PriofessorI DA1nIN points out, we calln mlake it appear like a nlebula in 
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which u maintains a constant value throughout.* Passing on, we notice that the 

stability function now depends solely upon the ratio of the density to the elasticity. 
The different elements of the nebula are attracted towards one another by their 
mutual gravitation, and are kept apart by the elasticity of the gas. For certain 
values of the ratio of these two systems of forces, it will be possible to find displace- 
ments in which the work done by one system exactly balances that done against the 

other, and these are the critical vibrations. 
The stability function uy is a function only of the quantities determining the 

equilibrium configuration of the nebula, and its value may therefore be found from 
the equations of equilibrium. We proceed to examine the value. 

EVALUATION OF THE STABILITY FUNCTION. 

General Case of a Nebutla at Rest. 

? 30. We have already quoted Professor DARWIN'S result that u = : for an 

isothermal nebula at rest, an(l the considerations put forward in the last section will 

probably suggest that the result in the more general case will be found to be 

independent of variations in temperature at finite distances, provided only that 
the temperature has a definite limit at infinity. We shall, however, examine the 

question ab initio, using a slight modification of DARWIN'S method, and making the 

problem more general by retaining a spherically symmetrical system of external 
forces. 

We shall denote the potential of this system of forces by V', and ulse V to denote 

the gravitational potential of the nebula itself. The total potential is now V + V', 
so that the equation of equilibrium, equation (11), takes the form 

(Tp) - ((V + v') = o, 

and if M is the mass of the solid core, this can be written 

- (XTp) + 4r pr dr + M -- = 0 . . . . (107). p dV- it, + 4w prd?M dr 

Differentiating with respect to r, 

c (2 p. (XTp) + 4rpr2 - (r d- )= 
dr \p dr dv- '/ 

- 
dr\ d, f 

Write 
XTp = ey, 

* G. H. DARWIN (I.c. ante, p. 16), " If we view the nebula from a very great distance, . . the solution 

of the problem becomes y = log 2x2." Now u = - x2d2y/dx2, so that this solution is equivalent 
to i == 1. This justifies our statement, and shows at the same time that for any nebula at rest and 
in equilibrium ux, has the critical value u, = 1, provided it is acted upon by no forces except its own 

gravitation. 
VOL. CXCIX,-A. F 
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alnd 

= rl -I X?-;r 

so that 
(T 1 d, 
.r Trs ( 37 

then the above equatio n may be written 

tk +4r- (dr \ dr . 

At inlfinity we are supposing XT to have a definite a(nd finite limit, so that the 

lirmiting value of x is 1/XT'. 

limit given by 

Let us further suppose that r - (k 

f7dr / r di ) d \ -r 
o * . . . o 

has a definite 

. . i (10), 

and that squares of V" may be neglected. Then thl e lilliting form 
infinity is 

p4z 47re- y I V" 

dx' (\T (A) 
Write 

tl 

of (108) at 

. (1 10). 

y-r + log 2 - 
ien 

: 
y 

d7, ---2- 42 -.y2 ltog (XT), 

id 
47eY 2er 

(XTx')4 x2 

Equation (110) is now transformed into 

(2 + (e- ) + 4;- log (XT)0 
. 

.T 

ia asiishes2 t ay In the special case inl which d- log (XT) vanishes, this may be written 

dsr~~ 2a --Lr12 - + i -q 
cl'x 2 6- 

!- \ 
T \ - 0o 

22 Ty 2 ' 

and at infinity (i.e., for very snmall values of x), the solution is 

/-2x~2+ P A-cos ? v2 /7log ) . . 

where A, B are the two constants of integration, 

(108). 

(1I1). 

(112) 

a- 
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In the more general case in which -2 log (XT) cannot be supposed to vanish, it is 

clear that this term will vanish at infinity in comparison with the other terms 
in (11 1), if rJ has the limniting value given by (1 12), and therefore that (112) is the 

limit, at infinity, of the solution of (108). 
Of the two arbitrary constants, A and B, the former corresponds to the indeter- 

minateness of the linear scale upon which the nebula is measured, the second to the 
indetermlinateness of the conditions at the inner surface of the nebula. If there is no 

core, there is only one value of A/B which will give a finite density of matter at the 
centre of the nebula. Further information as to equilibrium configurations can be 
found in Professor DARWIN'S paper, or in a paper by A. RITTER. ' 

For our purpose it is sufficient to know that the second termn in i vanishes with x 
for all values of A and B. Hence at infinity 

2xiT + log 2X 2 

ey X3T3x. XT P _1 = -2- e?lT V"i/2.AT2 -_ eG "(/2xl2T 
P -- 
XT 27r" 

-- 
27r 

and hence (equation (107)) 

t = P ev '2AT- 1 4- 2 ** (113). AT 

Putting V" = 0, we arrive at the anticipated result that the stability function has 
a unit value, for every nebula which extends to irnfinity in such a way that XT1 
has a finite limit at infinity. 

A Slowly Rotating Nebula. 

? 31. The case which is of the greatest physical interest, is that in which the 
nebula is not at rest but is rotating in a position of relative equilibrium 

Here the arrangement is no longer in spherical shells, so that the foregoing analysis 
breaks down. If, however, we suppose the rotation w to be so small that wr4 may be 
neglected, it will be easy to modify the foregoing analysis, so as to take account of 
rotation. 

We shall still suppose the nebula to extend to infinity, so that we must not suppose 
the rotation to be the same at all distances, for in this case a finite value of w would 
imply an infinite velocity of those parts of the nebula which are at in-finity. Let us 

* ' Wied. Ann.,' vol. 16, p. 166. 
F 2 
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suppose that at infinity the linear velocity approximates to a finite limit, so that re 

may write 
~o = I/i/r 

for all values of r greater than a certain amount. 
So long as we are only concerned with configurations of equilibrium and vibrations 

of frequency p = 0, the rotation may be allowed for by the introduction of a force of 
amount w2r sin 0 per unit mass, acting perpendicular to the axis of rotation; or, what 
comes to the same thing, by the introduction of a potential 

-2 ( - P,) fJ r W, jlr, 
or 

(1-p2) 

where, for all values of r' greater than a certain value, 

V' - -2n logr . . . . . (114). 

Let us examine separately the two effects arising from the two terms of this 

potential, beginning with the term - PV'. There will in this case be a correction 
to be applied to all equations, and this correction will consist of the addition of 
a small term containing wcP2. Let us suppose that all symbols which have so far 

denoted functions of r, denote in future the mean value of the corresponding 
quantities averaged over a sphere of radius r. For instance, p is no longer the 

density at distance r from the centre, but is the mean density over the sphere of 

radius r. The density at any point will be of the form p + w2P2p., where p2 is 

a function of r. We may in every case equate the coefficients of different harmonics, 
and by equating the coefficients of terms which do not contain the terms o2P2, we 

shall obtain the same equations as were obtained in the case of w = 0, except that 

the meaning of every term is altered. 
The equations derived from the parts which do not contain w will suffice, as before, 

to determine p, so that the values of p are of the same form as before, except that 

the quantities involved have a slightly different meaning. Hence the stability 
criterion is still given by the value of the stability function nt ; while equation (107) 

* This particular law is chosen for examination because it leads most quickly to the required result. 
The case in which X vanishes at infinity maore rapidly than 1/r is covered by taking 2 = 0. Heie, 
however, the angular momentum vanishes in comparison with the mass, and it is not siurprising to find 
that a rotation of this kind does not affect the question of stabitity. The case in which w vanishes less 

rapidly than 1/r is physically impossible, since it gi-ves an infinite linear velocity at infinity, but may be 

theoretically included in the case of 2 =oo . 

Any special assumption about the value of X at infinity must, however, disappear when we turn to the 
case of a finite nebula (? 26), in which Q2 may be appropriately supposed to correspond to the surface 

velocity (oR1. 
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remains true, if the new meaning is given to the symbols in each case. We conclude 
that the question of stability is not affected by the potential - PV'. 

The remaining potential term is the spherically symmetrical term V'. The total 

potential may now be taken to be V+V', and this potential, besides being spherically 
symmnetrical, satisfies the condition which was postulated in. the determination of the 
criterion of stability; namely, that its radial differential coefficient shall vanish at 

infinity to the order of 1/r. The value of the derived function V' (equation (109)) is 

V"= L',/ y ,2 2\) ? }2, by equation ( 14). 

Hence the stability function is given by (cf. equation (113)) 

?2 

u0 "0 + 3X,2T2 

We have therefore found that when an infinite nebula is rotating, with such 

angular velocities that the linear velocities at infinity have the limiting value Q, the 

value of u? is greater than unity no matter how small Q2 may be. This result has 

only been obtained on the supposition that w4 may be neglected. We have obtained 
no information as to what happens when wco is taken into account, i.e., whlen the 

square of the " ellipticity" of the nebula is taken into account. 

Influence of Viscosity. 

? 32. No account has so far been taken of the viscosity of the gas. The terms 

arising from viscosity which may be supposed to occur in the true equations of 

motion, will contain the coefficient of viscosity (/), and will in each case. depend on 

velocities and not on displacements. Hence viscosity enters the equations of motion 

through the factor /ip. The vibrations for which p = 0 are accordingly unaffected 

by viscosity, and since it is upon the existence of such vibrations that the whole 

question of stability turns, it is clear that the results already obtained must remain 

true even in the presence of viscosity. 
It can be shown that equations (24) to (26) specify a principal vibration, whether 

the gas is viscous or not. The result is stated without proof, as the proof is rather 

lengthy, and has no bearing upon the main question under discussion. 

A Nebula in Process of Cooling. 

33. In the mathematical investigation we have vebeen concerned with vibrations 
about a position of absolute equilibrium. In nature, no such position of absolute 

equilibrium will occur; the condition of the nebula, -will be incessantly changing. 

37 
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Let us suppose the temperature of the nebula to be continually cooling, owing 
either to radiation of heat from its surface or to a process of quasi-evaporation such 
as is described in Professor DARWIN'S paper (? 13 or p. 66). Since the gas (or quasi- 
gas) is not a perfect conductor, the nebula will not at any time be in perfect thermal 

equilibrium. The changes in density of all parts, and in the temperature of the 
inner parts of the nebula will, so to speak, lag behind their equilibrium values as 
determined by the changes in the temperature of the outer part of the nebula. It 

is, therefore, clear that so long as the nebula is cooling, the ratio of the density to 

elasticity in the outermost; layers of gas will be greater than that calculated upon 
the assumption of perfect equilibrium. This "lag" accordingly decreases the value 
of the stability-function, and so supplies a factor which tends to instability. 

SUMMARY AND DISCUSSION OF REESULTS. 

? 34. Let us now examine to what extent we have found solutions of the two 

problems propounded in ? '4. 

Firstly, as regards the stability of a spherical nebula of very great size, of which 
the outer surface is maintained at constant pressure. We have found that the 

stability-function for such a nebula (in the limiting case in which the outer radius is 

infinite) has a unit value when the nebula is in equilibrium and at rest. This value 
is increased by allowing for the " lag" in temperature caused by the cooling of the 
nebula. It is also increased by a rotation of the nebula, at any rate so long as this 
rotation is small. The nebula will become unstable as soon as the stability-function 
becomes greater than a certain value, which has not been calculated, but is known to 
be between 1 and 1V. The investigation of ? 23 leads us to expect that the critical 
value of the stability-function will increase as R, decreases, although this has only 
been strictly proved for a single case. 

It is therefore possible that, even when the nebula is non-rotating, the temperature- 
lag may be sufficient to make the nebula unstable. If we disregard the temperature- 
lag, it seems probable that a small rotation will suffice to bring about instability. 
This latter question, however, deserves more detailed examination. 

? 35. Let us suppose that the nebula starts from rest in a configuration of absolute 

equilibrium, and that the rotation is gradually increased. In this way we obtain a 
linear series of configurations of relative equilibrium. When the rotation is small, 
the configuration, instead of being strictly spherical is slightly spheroidal. The 
series we are considering is therefore the analogue of the series of MACLAURIN 

spheroids of an incompressible fluid. So long as the rotation remains small, we may 
separate the two terms of the rotation-potential in the mananer explained in ? 31. 
We may, in fact, suppose our analysis still to apply as if the configuration remained 

spherical, and the only eff-ect of the rotation is to increase the value of the stability- 
function. For larger values of w", all our results are subject to a correction of the 
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order of co4. For small values of o2, the value of 0co will be proportional as we have 

seen (? 31) to u.- 1, so that this correction may be supposed to be proportional to 

(uo--1)2. The first points of bifurcation of orders 1, 2 occur (in the spherical 

configuration) at u, - 1 = 0, 2} respectively, where 0 is known to be less than 8. 

Now it would seem to be fairly safe to neglect 02, but even if we waive this point, it 

will be admitted that the correction of the order of (u,o - 1)2 cannot be so great as to 

change the order in which these two points of bifurcation will occur. 

We therefore see that a rotating nebula will become unstabl]e for a comparatively 
small value of w2, the critical vibration being of order nz = 1. The new linear series 

is one in which (except for the spheroidal deformation caused by the rotation) the 

surfaces of equal density remain spheres, which are no longer concentric. The linear 

series of order n = 2 will accordingly be unstable: this is the analogue to the series 

of Jacobian ellipsoids in the incompressible fluid. 

? 36. The case of a nebula which actually extends to infinity is much simpler. 
Here the value of u, is again unity, and this value is increased, as before, either by 

temperature-lag or rotation. Every point at which uc is greater than unity is in one 

sense a point of bifurcation, since starting from this point there is a series of 

unsymmetrical equilibrium configurations. Strictly speaking, these points do not 

indicate an exchange of stabilities, for the critica:l vibrations remain of frequency 

p = 0 even after passing the point. They possess, however, the property that a 

critical vibration, if once started, will continue increasing, since the forces of 

restitution (of whichever sign) vanish in comparison with the momentum of the 

vibration. 

? 37. Let us now try and examine which of these two hypotheses is best capable of 

representing the "primitive nebula" of astronomy. Imagine a sphere S drawn in 

the nebula, the radius being a, and the pressure at this surface wr. The matter 

inside S is to form a spherical nebula of finite extent, bounded by a sphere over 

which the pressure is IT, and this matter is to be of a density sufficient to warrant us 

in assuming the gas-equations at every point. The surface S will be continually 
traversed by matter, but this will be of no consequence if the losses and gains 
balance in every respect. The matter outside S must supply the pressure 'ri, and 

will also, as was explained in the introduction (? 3), influence the matter inside S by 
its motion. 

Imagine the matter inside S to be executing a small vibration, and consider two 

extreme hypotheses as to the behaviour of the matter outside S. 

Suppose, in the first place, that the matter outside S is such that it and the 

matter inside S together form a perfect spherical nebula at rest. Then the motion 

of the matter outside S is given by the equations of vibration of such a nebula, and 

the influence of this matter upon that inside S is exactly that required in order to 

enable the matter inside S to execute the vibrations given by the equations of an 
* infinite nebula. 
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Suppose, next, that the matter outside S consists mainly of molecules or of masses 
of matter which are describing hyperbolic or parabolic orbits, or which come from 

infinity and after rebounding from the nebula return to infinity. Suppose, further, 
that the interval during which such a mass is app)reciably under the influence of the 
matter inside S is so small that it is not appreciably affected by the motion of the 
latter. In this case the matter outside S may be regarded as arranged at random, 

independently of the vibrations of the matter inside S; it will not, as under our first 

supposition, take up the motion of the matter inside S to any appreciable extent; 
Hence the matter outside S will exert no force upon that inside S except the 
constant pressure wr, and the vibrations of the matter inside S will be those of a 

spherical nebula of finite size, bounded by a surface at constant pressure 7r. 
These two extreme hypotheses lead, as we can now see, to the two conceptions of a 

nebula put forward in ? 4. In nature the truth will lie somewhere between these 
two hypotheses, and it is by no means easy to decide which of the two gives the 
better representation of an actual nebula. We shall, however, be within the limits 
of safety if we assert of ani actual niebula only those propositions which are true of 
both our ideal nebulae. 

? 38. We may accordingly sum up as follows:- 

(i.) A nebulla at rest and in absolute equilibrlium in a spher?ical configuration will 

always be stable. 

(ii.) Such a nebula may become unstable as soon as the temperature-lag is taken 
into account. 

(iii.) There will be a linear series of configurations of relative equilibrium of a 

rotating nebula, starting from a non-rotating spherical nebula (supposed 
stable), and such that the configuration is symmetrical about the axis of 
rotation. This linear series corresponds to the series of Maclaurin 

spheroids. 

(iv.) The first point of bifurcation on this series occurs for a comparatively small 
value of the angular rotation. 

(v.) The second series through this point is one in which the configurations 
possess only two planes of symmetry. Initially the configuration is such 
that the equations to the surfaces of equal density contain only terms in 
the first harmonic in addition to those required by the angular rotation. 

(vi.) There is a linear series which corresponds to the series of Jacobian ellipsoids, 
each configuration possessing three planes of symmetry. The point of 
bifurcation at which this series meets the series mentioned in (iii.) is a point 
at which the angular rotation is much larger than that at the point of 
bifurcation mentioned in (iv.). 

(vii.) This latter linear series appears to be always unstable. 
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T-IE UNSYMMETRICAL CONFIGURAtTIONS OF' A NEBULA. 

wTe Seconcl Series of Equilibrinum Configurations. 

? 39. Let us Inow tiy to examine the second serLies of equilibrium configurations, 
which, as we have seen, is a series of stable configurations replacing the series of 
Jacobian ellipsoids. In this way we shall be able to gather some evidence with a 
view to forming a judgment whether the behaviour of the nebula after leaving the 
symmetrical configuration is such as is required by the nebular hypothesis. 

Let us suppose, in the first instance, that the symlmetrical configuration from which 
this series starts is one in which there is no rotation, so that the configuration is one 
of perfect spherical symmetry. If the nebula is one in which cooling takes place 
very slowly, the configuration of the nebula will always be very approximately an 

equilibrium configuration. This configuration will be one of the spherically 
symmetrical series until the first point of bifurcationi is reached; after this the 

coinfiguration will change so as to move along the other series, which passes through 
this poiiit. 

Now we have already foulnd the manner in which the configuration first diverges 
from spherical symmetry; in other words, we have a knowledge of the unsymmetrical 
series in the immediate neighbourhood of the point of bifurcation. If then, we can, 
by some method of continued approximation, obtain a more extended knowledge of 
this series of configurations, we shall be able to trace the motion of a nebula whicl 
is cooling with infinite slowness, and in this way form some idea of the motion to be 

expected in the more general case. 
Let us assume, as a general form for the " series " nlow under discussion, 

Po + plP +p + P3P3P + ..... (115) 

where P, is the zonal halrmonic of order s, and po, Pi, pp are functions of r- and of 
some parameter a. This parameter determines the position of any particular 
configuration in the series. We shall suppose that at the point of bifurcation a = 0, 
and we then know that when a is very small the limiting form of p is 

P = Po + PiP1 

In the Inotation which has been in use throughout the pal)e, we find that 

corresponding to the density distributionl given by eqcuation (72) the giravitational 
potential at the point r, 0 is 

V 00= 0o + 01 P O P - + 0P, - .... ( ), 
where 

VOL. C-" d 
il - (Xc.7)- 

VOL. CXCIX.-A. -A 
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The fuinctions P p, . . . . are to be determined from the condition that V aiid p 
shall satisfy the three equations of equilibrium, which are of the form 

I d(m (IV 

p Cd dx 

An Isothe,rmal M NelTela6. 

? 40. Let us suppose, for the sake of simplicity, that the nebula is at uniform 

temperature, and extends from r = 0 to r -= o We have already seen (equation (77)) 
that the critical vibration for a nebula initially isothermal, is one in which the nebula 
remains isothermal. Hence it follows that if a nebula changes its configuration 
through coming to a point of bifurcation, when moving on a series of isothermal 
and spherical configurations, then the new series will also be one in which the 
equilibrium is isothermal. 

We may now write K = Kp, where K is a constant, and the three equations of' 

equilibrium become equivalent to the single equation, 

K log p V + c, 
or 

V+c 

p=e o . .......e (118). 

Now the series in question is, as we have seen, approximately represenited, near to 

the point of bifurcation, by takinig only two terms of (115), and consequently only 
two terms of (116). In this case equation (118) becomes : 

00? c P 
/01 

Po + PiP e- 

1 

P + (p + 1)..} . (119). 

Equating coefficients, we find that po is given by the equationi 

e^+e 

PO = e K 

the same equation as in the case of perfect spherical symmetry. Also p, is given by 
the equation 

Po o0 

It will be easily verified that this equation is exactly equivalent to our former 

equation (38). The equation contains an arbitrary multiplier in its solution. This 

may be taken to be a, the parameter of the series, so that we may write 

P1i '- u?1, 
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where o-1 is a completely determined function of r. Thus, as far as a, the solution is 
seen to be 

P = Po + CL-P1. 

We shall now show that, as far as a2, the solution is 

P - Po -+ ar20o + c- C(lP1 -- a 2,P . . . (120). 

The substitution of this in equation (118) leads to 

Po + a2 or,, + - ac1P + acr2P2' 

,, -{-e l+ P + 1 -~ p,) + ,+ p. 
C}K , 

where 1j stands in the same relation to cr1 as does 0, to p,. The right-hand member 
of this equation is equal to 

0+{ (i + +I ap1'2 a'+2 C1 1 po, +C 2 1 c 21 p} 
+ + 

fC /C + C2 / 2 + 

in which the unwritten terms are of degree at least equal to 3 in a. 

Neglecting a3 the equation is satisfied if 

P 0o K 

Po -- e K 0-02- Po { 0 6 
- 

+ (121), 

I . . . . (122), 
_Po l 

K-} 

- _ PO^ .1 Pool I c o r po= 2 
trot, 

~ 
f K ---i" . . (123). 

These equations determine cr- and r-2 uniquely. 
It is obvious that this metod is capable of indefinite extension, 

general form of configuration in the series will be given by 

and that the 

P = po + a2c0 + a4o0, + ... . + (aorl + -a3a 13+ a55 + .. .) Pl 

+ (a2C2 + a4, + . . . ) P + (a33 + a5,3 + ... ) P3 +&c. . (124). 

? 41. Let us examine in greater detail the solution as far as a"2, this being given by 
equation (115). The important question, as will be seen later, is the determination 
of the sign of (r,. We therefore pass at once to the consideration of equation (123). 
Written out in full, this becomes 

* 4 
{;po 1 f r2 d' + r d + 1 Pool 

5 5 T3Jo 2 c 

G 2 
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This equation may be transformed in the same way as equation (39). If we 
write 

Y Ph-A0 " E7i Po K 

we find that the above equation is equivalent to (qf equations (47), (48), (49), 
(54), (56)) 

r2^ _ = 
? 4rr 

O =-7 { 8 j4o--- ** . (125), dr 
- ~' 

-/e 

together with the two equations 

K ((2-)] o0 .. ...... (126), 

[r , (y 
3)]j 

o .. . .... (127). 

Writing 
271rp('r 

equation (119) becomes 

2- (6 2u) .. (128). 

Rteferring to the table of values for u, which will be found on p. 15 of 
Professor DARWIN'S paper, it appears that u increases from a zero value at the origin 
up to a maximum value of about 1'66; it then decreases to a minimum of about '8, 
and after this increases to 1, its value at infinity. Thus the factor 6 - 2tu has a range 
of values from 6 to about 2-. 

Now the solution of 

1; 
- ( n (r+1- I . .... . (129) 

is easily found to be 

zero, if 1n is positive, and if y is to satisfy conditions (126) and (127). 

Comparing (128) with (129), we see that if u had a constant value uo at every 

point of the nebula, the value of y would be given by equation (130), in which C1, C2 

would be put equal to zero, and n would be the positive root of 

n (n + 1) = 6 - 2tt0, 

provided only that 6 - 2 i were positive. 
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For the range of values for u0 from u0o = 0 to Ut0 == 1'66, the value of n would have 
a range of values from 2 to 1'2. Thus the form of solution is materially the same for 
all of these values of uo. It will be seen without difficulty that the solution of (128), 
jin which u has not a constant value, but varies over the range from 0 to 1 66 as r 

varies, will be such that the graph expressing y as a function of r will present the 
same features as are common to the graphs giXen by equation (130) for ranges of n 
froml 2 to 1'2. 

Now the value of y given by equation (130) is positive for all values of r, hence we 
infer that the solution of (128) is suich that y is positive for all values of r. We 
therefore have, for all values of r, 

- 
= -- *-, - + a positive quantity, 

so that 0-2 is positive for all values of r. 

? 42. We therefore see that the initial motion, in which u and A are each 

proportional to the first harmonic, will first break down owing to the introduction of 
terms involving the second harmonic. The sign of these terms is such that there is, 
in all the shells of which the nebula is composed, a diminution of density in the 
equatorial regions, and a condensation at both poles, which must be added to that 

given by the terms involving the first harmonic. 
The nature of this motion will become clearer upon a reference to fig. 3. This 

figure consists of the four curves* 

r = ao r = aO + alP1 

r = a%0 ? C]Pl + P aPP2 r-" = a0 + a'llP1 + a'CP2, 

and these may be supposed to represent curves of equal density in the three stages. 
It is easy to see that of the pear-shaped surfaces of equal density, the equations of 
which contain the two first harmonics, some wil.l be turned in one direction, and some 
in the other. For if they were all turned in the same direction the centre of gravity 
could no longer remain at the centre of co-ordinates. Thus, if the narrow ends of 
these pear-shaped figures point in one direction at infinity, we must, as we go 
inwards, come to a place at which they have the transition shape, namely, ellipsoids 
of revolution, and after this they will point in the opposite direction. 

It appears, therefore, that the initial motion is such as to suggest the ultimate 
division of the nebula into two parts, this division being effected by the outer layers 
condensing about one radius of the nebula, so as to leave room for the ejection of a 

' The particular values for which the curves are drawn are in the ratio a = 11, a, = 2, a- c = 5, a2 = 2, 
a'll =7, a'2 = 4. Thus the equation of the last curves are in polar co-ordinates, 

--1. (10 + 5 cos 0 + 3 cos2 0), r = l' (9 + 7 cos0+ cos2 0). 
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central nucleus in the direction of the opposite radius. Whether or not actual 

separation takes place would probably depend on the aimount of the angular velocity. 
It is of interest to compare the result just arrived at, with the correspondilng 

result founld by POITNCARE for the motion when an ellipsoid of JACOBI first becomes 

unstable.,' This is described as follows :- 

"' La plus grande portion de la, matiere seimble se rapprocber de la forme spherique, 
tandis que la plus petite portion de cette menme mati'ere sort de l'ellipsoide par 
1'extremite du grand axe, comme si elle voulait se se6parer de la masse principale." 

Thus, although the initial motions are, since they start from different configurations, 
necessarily different, yet it would seem as if the final result was very much the same 

in the two cases. In either case we have al diminution of matter in the equatorial 

regions, suggesting the ultilmate division of the mass into two, anlld in each case these 

\T \ 
N N 7 

Fig. 3, 

two masses are of unequal size, a result which could hardly have been foreseen 

without analysis. 
? 43. If the rate of cooling of a nebula is appreciable, the motion will not be along 

a series'" of equilibrium configurations. The value of p, the frequency which is 

nearest to instability, will be changing at a finite rate, and may run to some distance 

beyond the zero value, before the deviation of the nebula from the spherical shape is 

sufficient to invalidate the analysis of our paper. In this case we can imagine the 

first unstable vibration, that for which p = 0, being overtaken by other unstable 

vibrations of greater anid greater frequency, the corresponding velocity of divergence 

' Acta Mathematica,' vol. 7, p. 347. 
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from spherical symmetry becoming continually greater. It is therefore quite 
conceivable that the motion may become adiabatic at an early stage, and it is possible 
that it may be better imaginied as a collapse or explosion, rather than as a gradual 
slipping fromn a spherical state of equilibrium into and through a series of 

unsymmetrical states of equilibrium. 
But an examination of the physical character of the motion -will show that in this 

extreme case, as also in any intermediate case, the motion must be, in its essentials, 
the same as that which has been found for the other extreme case, namely, that of 

infinitely slow cooling and perfect thermal equilibrium. In the spherical state, the 
outermost layers of gas may be regarded as stretched out in opposition to their 

gravitational attractions, being maintained in this state by the elasticity of the gas. 
The balance between these two agencies (which is, speaking loosely, measured by the 

stability function, u?) must be supposed to be continually changing, and instability 

always results from the same cause, namely, that the elasticity of these outer layers 
becomes inadequate to resist the gravitational tendency to collapse. In every case 
the outer layers concentrate about a single radius of the nebula, the axis of harmonics 
(0 =0 in equation (72)) and so increase the pressure along this radius, while 

decreasing that along the opposite radius (0 = 7). This pressure acting upon the 
inner layers of gas and the core sets them in motion, and in this way we have the 

tendency to separation into two nebulae. 

A Nebula in " Isothernmal-adiabatic " Equilibrium. 

? 44. A nlebula which consists of an isothermal nucleus with a layer in convective 

equilibrium above it, is said to be in " isothermal-adiabatic" equilibrium. At the 
surface at which the law changes from the adiabatic to the isothermal, the quantities 
r, T and p must all be continuous. 

The isothermal part is capable of executing a vibration of frequency p = 0 while 

remaining in isothermal equilibrium throughout, provided the forces acting upon it 
from the adiabatic part areAthe same as would act if the adiabatic part were replaced 
by aii isothermal part iin such a way that the whole imade up ain infinite isothermal 
nebula. If the nebula is rotating, the amplitude of vibration of the infinite nebula 
will vanish at infinity proportionally to some inverse power of r, this power iicr'easing 
with the rotation. For sufficiently large rotations, the vibrations may be regarded 
as inappreciable except over the original isothermal nucleus, so that the vibration is 

approximately unaltered when the outer layers are again replaced by layers in 
convective equilibrium. 

We see, therefore, that an " isothermal-adiabatic " nebula may becolne unstable, for 

sufficiently large rotations, through a vibration of order n = 1. No attempt is made 
to obtain any numerical results. We can, however, follow up the subsequent motion 
in the same way as in the case of' an isothermal nebula. 
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Over thle part of the nebula wlich is in adiabatic equilibrium, the relation betw-een 

density anld pressure is 
vz = cpv, 

whlere c is a constlant, so that the equations of equilibrium become 

P dp dV 
cypYO 

-I - &C., 

and are therefore equivalent to the single equation 

cy pyl V - V, 

whlere V0 is the potential of the outerl boundary of the nebula. This takes the form 

v - . C7P o' {]* + (y -1) F P1 + 2 () (+ 
Po Po 

+(y- 1) Po2 + 

Por, 

+ (y +- 0)? P,+ -'-) p{ + (- i)(ry- -) ( o'(7 -12 p 
P01 ;i 

, 

Po Po \Po/ I J 

It is obvious that equation (124) again gives the genteral forim of solution, alnd tllhat, 
as far as aC, the equations are (cf. equations 121, 123) 

^o- Vo-^P ) - ^ (131), 

5~1 "CYP o' l 3 

S 
c yp + (y ) ( } .. ..i. (133), 

+t5 ---6--P?7 (j ) .. . . (134). 6 Po:' (T L Po 3 ce 

Wiiting K for cyp~Y-', we see that equations (132) and (133) may be written 

. = . ... . . (.135). 

? ( " + -y) .... . (13-6). K ~~~~~~~Po9K 
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These are equations similar to (122) and (123); the last term in (136) is diffirent 
from the last term in (123), but both terms agree in being invariably positive. Hence 
it appears that the question of the sign of a-2 turns, as in ? 37, upon the sign of the 
factor (6 - 2tu). We can no longer actually evaluate this factor, as in ? 37, but it 
seems to be safe to infer from analogy that it will be positive at every point, and this 
in turn shows that Cr- must be positive at every point. Hence it appears probable 
that the motion will be that described in ? 38. 

Rotating Nebula. 

? 45. The equations of an unsymmaetrical series starting from a symmetrical 
configuration in which there is a finite amount of rotation would be extremely 
complicated, and no attempt to handle them is made in this paper. The correction 
for a small rotation will clearly consist merely of an increase in the terms containing 
the second harmonic, so that the general shape of the curves will be similar to that 
of the last two curves of fig. 3. 

Little difficulty will be experienced in imagining the shape of curves appropriate 
to larger rotations. 

PiOBLEMS OF COSMIC EVOLUTION. 

Infinite Space filled with Matter. 

? 46. A limiting solution of the equations of equilibrium (corresponding to A =_ o > 

B = o in equation (114)) gives a nebula in which the density is constant every- 
where. This solution may be supposed to represent infinite space filled with matter 
distributed at random. If space has no boundary there is presumably no need to 

satisfy a boundary-equation at infinity, so that p may have any value; if, however, 
this equation must be satisfied the only solution is p = 0. 

Let us consider the former case. Space is filled with a medium of mean density p 
and of mean temperature T. Since the space under consideration is infinite, we may 
measure linear distances oni any scale we please, and, by taking this scale sufficiently 
great, we can cause all irregularities in density and temperature to disappear. We 

may, therefore, suppose at once that the density and temperature have the constant 
values p and T. 

The equations of motion for small displacements referred to rectangular axes are, 
in the old notation (cf ? 6), since V0 and wO are constants, 

cdT dV' 1 d(M' 
- - , &c., . . . . . . . (137), 

or, operating with d/dx, d/dy, d/dz, and adding 
VOL. CXCIX.--- A. H 
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'2 = - V2w . . (1 38). dt2 Po 

Since 'V' is the gravitational poten:tial of a distributlion of desity - p (cJf ? (), we 
have 

7V' = 4Ap, . (139), 

while if we suppose, for the sake of simplicity, that the motion is adiabatic, so that 
the ratio of pressure to density changes at a constant rate K, we have (fCf equation 
(3), p. 5) 

V2 =- KV2p = - KpOV2A 

IHence equation (138) becomes 

-A 4 rpA KA 0. . . . (140). 

ThlLe simplest solution of this is of the form 

eA = -1 ( .i.. .. (141), 

wh ere 
2 t. 

: 
-_ . . .. .. . . . (142), 

and the general solution can be built up by superposition of such solutions. 

Now solution (141) gives A = 0 at infinity, provided q is real, and therefore 

provided p2 + 4rp is positive, a condition. which admits of p being imaginary. 
There is therefore a possible motion, which consists of a concentration of matter 

about some point, the amount of this concentration vanishing at infinity, and the 

amount at any point increasing, in the initial stages, exponientially with the timle. 
We coinclude, therefore, that a uniform distribution in space will be unstable, 

independenitly of the mean temperature or density of this distribution. > 

The Evolution of Nebula'. 

? 47. We can also see that a distribution of matter which is symmetrical about a 

single point will be equally unstable. For, if this distribution of matter were perfectly 

fi An interesting field of speculation is opened by regarding the stars themselves as molecules of a 

quasi-gas. If space were Euclidean and unbounded, there would be no objection to this procedure, and 
we should be led to the conclusion that the matter of the universe nmust beconme mlore and more concen- 
trated in the course of time. If space is non-Euclidean, this concentration might reach a limit as soon as 
the coarsegrainedness of the structure attained a value so great that the distance betweenl individual 
units became comparable with'the radii of curvature of space. In any case, it may reach a limit as soon 
as an appreciable fraction of the space in question becomes occupied by matter. 
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homogeneous, the whole mnass of matter would form a spherical nebula of literally 
infinite extent, and would therefore be in neutral equilibrium. The introduction of 
even the smallest irregularities into this structure is equivalent to the application ot 

an external field of force. This, as has already been seen, will destroy the spherical 
symmetry, and it can easily be seen that the motion from spherical symmetry is such 
as to lead to a concentration of matter about points of maximum density. 

It appears, therefore, that the configuration which will naturally be assumed by an 
infinite mass of matter in the gaseous or meteoritic state consists of a number of 

nebule (i.e., clusters round points of maximum density). We may either suppose 
the outer regions of these nebula to overlap, each nebula satisfying the gas-equations 
by being of infinite extent, or we may suppose the nebulae to be distinct and of finite 

size, the interstices being filled by meteorites or other matter, which by continual 
bombardment upon the surfaces of the nebul,e supply the pressure which is required 
at these surfaces by the equations of equilibrium. 

? 48. What, we may inquire, will determine the linear scale upon which these 
nebulae are formed ? Three quantities only can be concerned: y the gravitational 
constant, p the mean density, and XT the mean elasticity. Now these quantities 
can combine in only one way so as to form a length, namely, through the expression 

7P 

of which the dimensions will be readily verified to be unity in length, and zero in 
mass and time. We conclude, then, that the distance between adjacent nebulae will 
be comparable with the above expression. 

Now the value of y is 65 X 10-9, and if we assume the primitive temperature 
to be comparable with 1000? (absolute) we may take XT = 109 (corresponding 
accurately to an absolute temperature of 350? for air, 2800? for hydrogen). If we 
take the sun's diameter as a temporary unit of length, the earth's orbit is (roughly) 
of diameter 200. If we suppose the fixed stars to be at an average parallactic 
distance of 0'5" apart, measured with respect to the earth's orbit, we find for their 
mean distance apart, about 4 X 107 sun's radii. The density of the sun being, 
in C.G.S. units, roughly equal to unity, we may, to the best of our knowledge, 

suppose the mean density of the primitive distribution of matter to be about 

(4 X 107)-3, or say 10-23. Substituting these values for y, XT and p, we find as the 

scale of length a quantity of the order ot 101l'5 centims. The distance which 

corresponds to a parallax of 0'5" would be about 1018'" centims. It will therefore be 
seen that we are dealing with distances which are of the astronomical order of 

magnitude. 

u 2 
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The Evolution of Planetctary Systemss. 

? 49. Let us now regard a single centre, together with the matter collected round 

it, as the spherical nebula which is the subject of discussion. On account of the 

way in which it has been formed, this nebula will, in general, be endowed with 
a certain amount of angular momentumn. We have seen that a primitive nebula of 
this kind may be supposed, under certain conditions, to become unstable. We have 
also seen that the motion, when the nebula becomes unstable, is such as to strongly 
suggest the ejection of a satellite. 

As a nebula cools the rotation increases, owing to he contraction of the nebula, 
and a also increases. Thus the quantity Qi/3AX2T , which measures the rotational 

tendency to instability, has a double cause of increase; firstly owing to the increase 
in 2, and secondly owing to the decrease in T. We can accordingly imagine the 

primitive nebula becoming unstable time after time, throwing off a satellite each time, 
In the usually accepted form of the nebular hypothesis, the rotatioti is supposed to 

be the sole cause of inistability, so that the system resulting firoim a single :rebula 

ought theoretically to be entirely symmetrical about an axis. On the view of the 

present paper, there is no reason for expecting this symmetry. For large rotations 
of the primitive nebula, the configuration of the 1resultant planetary system will 

approximate to perfect symmetry, but for small rotations, a slight irregularity 
occurring at the critical moment, at a point out of the equatorial plane, may produce 
a satellite of which the orbit is far removed from the equatorial plane. 

In conclusion, two particular cases of " irregularities" may be referred to. If the 
nebula is penetrated by a wandering meteorite, at a moment at which it is close to a 
state of instability, the presence of the meteorite will constitute an irregularity, and 

may easily result in the formation of a satellite, And if a quasi-tide is raised in the 
nebula by the presence of a distant mass, the same result may be produced. In the 
forimer case, the plane of the satellite would, if the rotation is sufficiently small, 
be largely determined by the path of the imeteorite; in the second case, by the 

position (or path) of the attracting mass. It would not, in either case, depend much 

upon the axis of rotation of the nebula. 

CONCLUSION. 

? 50. To sum up, it appears that the behaviour of' a gaseous nebula differs in 
at least two important respects from that of an incompressible liquid. In the first 

place, it differs as regards the amount of rotation which is required to produce 
instability, and, in the second place, it differs as regards the disposition of the orbits 
of the planets which will be formed out of the primitive nebula. It will be noticed 
that no definite numerical results have been obtained; my aim has been to obtain 

qua,litative rather than quantitative results, so as to show, if possible, that the 

Journal of Cosmology (2011), Vol. 17, No. 15, pp 7430-7484. 52



ME. J. H. JEANS ON THE STABILITY OF A SPHERICAL NEBULA. 53 

results to be expected for a gaseous nebula are of so much more general a kind than 
those usually inferred from the analogy of a liquid mass, that no difficulty need be 

experienced in referring existent planetary systems to a nebular or meteoritic origin, 
on the ground that the configurations of these systems are not such as couild have 

originated out of a rotating mass of liquid. 
In conclusion, I wish to express my indebtedness to Professor DARWIN for munch 

assistance which I have received fromn him throughlout the course of my work. 
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This paper provides the fluid mechanical basis of the LambdaCDMHC cosmological model. It neglects viscosity, diffusivity, density (the "Jeans' swindle"), and turbulence. The Jeans length scale V_S x tau_g is presented as the only important length scale of self gravitational instability, where V_S is the speed of sound, tau_g is the gravitational free fall time ~(rho G)^-1/2, rho is density and G is Newton's gravitational constant. Photon kinematic viscosity triggers fragmentation of the plasma at supercluster mass during the plasma epoch starting at 10^12 seconds and ending with galaxy mass at 10^13 seconds (300,000 years) at the transition to gas. Primordial gas viscosity decreases by a factor of 10^13 from that of the plasma, triggering rapid fragmentation of Jeans mass (million solar) clumps of Schwarz viscous scale Earth-mass (millionth solar) gas planets. 
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