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Note on the chemical potential of decoupled matter in the Universe
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Textbooks on cosmology exhibit a thermodynamic inconsistency for free streaming, decoupled
matter. It is connected here to the chemical potential, which deviates from its equilibrium value
µ = αkBT , where α is the usual parameter of the Fermi-Dirac or Bose-Einstein distribution function.
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I. MOTIVATION

In the textbooks on cosmology and astrophysics, such
as the ones of Dodelson [1], Weinberg [2] and of Giunti
and Kim [3], chapters on thermodynamics state that the
pressure p and energy density u = ρc2 (ρ is the mass
density, c the vacuum speed of light in vacuum) satisfy
at temperature T the relation

dp

dT
=

u+ p

T
. (1)

Dodelson mentions that in principle there occurs also the
chemical potential, adding that it is usually irrelevant in
cosmology [4]. These authors all rush to point out that
(1) is satisfied for photons and other relativistic parti-
cles, where u ∼ T 4 and p = 1

3u, but they do not mention
that it is violated in other cases. Indeed, for nonrela-
tivistic matter, such as baryons, cold dark matter and
non-relativisitic neutrinos, where u = nmc2, p ≪ u, with
n the particle density, this relation is violated. We seek
here to explain the cause of this paradox.
Our main point will be that because thermodynam-

ics should be valid beyond equilibrium, an old thruth
that has allowed to formulate thermodynamics for the
glassy state [5], Eq. (10) below must substitute Eq. (1).
Hereto we recall the relevant laws of thermodynamics,
apply them to equilibrium and, next, to the out of equi-
librium situation in the expanding universe.

II. THERMODYNAMICS

The first law states that the change of energy of the
system, U = ρc2V , is the sum of the heat added to the
system, the work done on the system and energy gained
by adding particles to the system,

dU = d̄Q+d̄W + µdN. (2)

where µ is the gain in energy per particle when one keeps
d̄Q = d̄W = 0. With the second law d̄Q = TdS and the

mechanical work for a change of the volume V , d̄W =
−pdV this yields

dS =
dU + pdV − µdN

T
. (3)

The system is extensive, implying that S(λU, λV, λN) =
λS(U, V,N). Therefore it must hold that

S = s1(ρ, n)U + s2(ρ, n)V + s3(ρ, n)N, (4)

for certain functions s1,2,3. Considering dS from (4) and
comparing its dU , dV and dN terms with (3), it is seen
that s1 = 1/T , s2 = p/T , s3 = −µ/T , which are func-
tions of ρ and n. These results imply the Euler relation

S =
U + pV − µN

T
, (5)

or, taken per unit volume,

s =
u+ p− µn

T
. (6)

Consistency between (3) and (5) imposes also

dp =
ρ+ p− µn

T
dT + ndµ. (7)

Inverting the relation T = T (ρ, n) at fixed n, one ob-
tains ρ = ρ(T, n), which expresses all these quantities as
functions of T and n. This allows to derive from (7) the
relations

∂p

∂T

∣

∣

∣

∣

n

=
u+ p− µn

T
+ n

∂µ

∂T

∣

∣

∣

∣

n

(8)

and

∂p

∂n

∣

∣

∣

∣

T

= n
∂µ

∂n

∣

∣

∣

∣

T

. (9)

While n is fixed for cooling a gas in a fixed, closed volume,
we can also admit situations where n changes with T , as
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it happens when cooling a gas with a movable piston or
in the expanding universe. Then we are interested in the
total derivative

dp

dT
=

∂p

∂T

∣

∣

∣

∣

n

+
∂p

∂n

∣

∣

∣

∣

T

dn

dT
, (10)

and a similar definition for dµ/dT . Combining (8), (9),
(6) and (10) we obtain

dp

dT
=

u+ p− nµ

T
+ n

dµ

dT
= s+ n

dµ

dT
, (11)

a result that could also have been obtained directly by
dividing (7) by dT . This expresses Eq. (8) for the general
case. From (5) we have the thermodynamic relation

µ =
u+ p− Ts

n
. (12)

III. EQUILIBRIUM THERMODYNAMICS OF

IDEAL QUANTUM GASES

In thermal equilibrium the grand canonical distribu-
tion function of an ideal Fermi-Dirac gas with mass m
and chemical potential µ = αkBT reads for a mode la-
beled by q and having energy E(q),

1
∑

nq=0

enq[α−βE(q)] = 1 + eα−βE(q) (13)

where β = 1/kBT . Accounting for all modes yields

Z =
∏

q

(

1 + eα−βE(q)
)

(14)

The Fermi-Dirac distribution reads

f(q) =
1

eβE(q)−α + 1
. (15)

We are interested in an ideal gas of particle with mass
m and momentum q. Taking periodic boundary condi-
tions for a cube with size V 1/3, the allowed momenta are
(qx, qy, qz) = 2π~V −1/3(nx, ny, nz), with integer values
of nx,y,z, so that

E(q) =
√

m2c4 + q2c2, (16)

and

logZ = V

∫

d3q

(2π~)3
log

(

1 + eα−βE(q)
)

. (17)

From this we derive

d logZ =
dV

V
logZ +Ndα− Udβ, (18)

in which we may identify U = V u and N = V n from

n =

∫

d3q

(2π~)3
f, (19)

u =

∫

d3q

(2π~)3
fE, (20)

and conclude that

p = nkBT logZ. (21)

Reinserting this into (18) we verify the central relation
(11). We finally find from (6) that the entropy density
equals

s = kB

∫

d3q

(2π~)3
[−f log f − (1− f) log(1− f)], (22)

To derive this result we may use that

βu− αn =

∫

d3q f(βE − α)

(2π~)3
=

∫

d3q

(2π~)3
f log

1− f

f
,

and

βp =

∫

d3q

(2π~)3
log

(

1 + eα−βE
)

=

∫

d3q

(2π~)3
log

1

1− f
. (23)

For later use we point out that by inserting
∑3

i=1 ∂qi/∂qi = 3 in the first identity and performing
a partial integration, we obtain the equivalent results

p = −
T

3

∫

d3q

(2π~)3
q ·

∂

∂q
log

(

1 + eα−βE
)

=

∫

d3q

(2π~)3
f
q2c2

3E
. (24)

We can also verify from (12) that α takes the equilib-
rium value

α = βµ. (25)

For bosons one has the grand canonical partition sum

Z =
∏

q

(

1− eα−βE(q)
)

−1

, (26)

the Bose-Einstein distribution
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f(q) =
1

eβE(q)−α − 1
, (27)

while the entropy reads

s = kB

∫

d3q

(2π~)3
[−f log f + (1 + f) log(1 + f)]. (28)

IV. DECOUPLED QUANTUM MATTER IN

THE EXPANDING UNIVERSE

In the expanding universe a certain species may decou-
ple from the other matter, meaning that, given its cross
section, the scattering candidates become so sparse that
practically no scattering will take place anymore. Then
in a flat Friedman metric

ds2 = c2dt2 − a2(t)(dx2 + dy2 + dz2) (29)

the one-particle occupation of the mode with momentum
q satisfies the free-streaming Boltzmann equation [1–3]

∂tf(q, t)−
ȧ

a
q ·

∂

∂q
f(q, t) = 0, (30)

with right hand side equal to zero (absence of scattering),
and a the scale factor of (29). The solution reads

f(q, t) = f [a(t)q]. (31)

we may connect a temperature to this,

T (t) =
a1T1

a(t)
, β(t) =

1

kBT (t)
. (32)

In the approximation of instantaneous decoupling at tem-
perature T1 the distribution function reads

f(q, t) =
1

exp[β1E(qT1/T )− α1] + 1
, (33)

where β1 = 1/kBT1 and α1 = α(T1) are time inde-

pendent. For neutrinos the decoupling took place when
they were relativistic, kBT1 ≫ mc2. In that case we
β1E(qT1/T ) ≈ βqc, so f simplifies to

f =
1

eβpc−α + 1
, (34)

where α ≡ α1 is a constant. Thus even though neutrinos
have a mass, their density will be quasi-relativistic, at
least as long as their distribution is uniform. (It has
been argued that neutrinos are presently condensed on
matter concentrations such as galaxy clusters [6].)
It has long been supposed that in this non-equilibrium

situation thermodynamics would still apply.

With f from (34) or, more generally from (31), the
entropy density (28) is continuous at T1 and scales as T 3

after that, as does the particle density (19), so that the
entropy per particle

σ =
s(t)

n(t)
=

s(T1)

n(T1)
(35)

is constant, and the entropy in a comoving unit volume
S = Nσ ∼ a3s conserved. The same holds for the co-
moving particle number N ∼ a3n.
The energy density is thus simply

u =

∫

d3q

(2π~)3
E(q)

eβqc−α + 1
(36)

=

(

kBT

2π~c

)3 ∫
d3k

ek−α + 1
E

(

kBTk

c

)

.

The pressure is not taken from (23) but from (24),

p =

∫

d3q

(2π~)3
1

eβqc−α + 1

q2c2

3E(q)
(37)

=
(kBT )

5

(2π~c)3

∫

d3k

ek−α + 1

k2

E(kBTk/c)
.

This Ansatz has been adopted because it satisfies the
energy conservation

u̇+ 3
ȧ

a
(u+ p) = 0. (38)

Now our point is that this is consistent with thermody-
namics when taking s = nσ from (28) and µ from (12),

µ =
u+ p− Ts

n
=

〈

E(q) +
q2c2

3E(q)

〉

− Tσ, (39)

where the averaging is over expression (33) or (34) for f .
For kBT ≪ mc2, where p/u ≈ 0 it yields µ ≈ mc2, which
is consistent with (11) because it cancels the large term
u ≈ nmc2, thus repairing the relation (1).
In conclusion, thermodynamics does explain the non-

equilibrium situation of decoupled quantum matter in
the expanding Universe, but the correspondence µ =
αkBT between the chemical potential µ and α, the time-
independent parameter of the Fermi-Dirac distribution
(34), is broken and replaced by the general relation (39).
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