STATISTICAL INVESTIGATION OF TURBULENT MIXING BY MEANS OF TURBULENT LINE SEGMENTS

Michael Gauding^{1,2} and Norbert Peters¹

¹ Institut f
ür Technische Verbrennung, RWTH Aachen University, Germany
² Chair of Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg, Germany

Motivation – Two-Point Statistics in Turbulent Flows

- Turbulent flows are non-linear with a strong interaction between various scales
- Description by two-point statistics

Kolmogorov/Yaglom theory:

Define velocity or scalar increment: $\Delta \phi = \phi(\mathbf{x} + \mathbf{r}) - \phi(\mathbf{x})$ Yaglom equation: $-\langle (\Delta u)(\Delta \phi)^2 \rangle = \frac{2}{3} \langle \chi \rangle \mathbf{r}$ Komogorov equation: $-\langle (\Delta u)^3 \rangle = \frac{4}{5} \langle \varepsilon \rangle \mathbf{r}$

2 Dissipation Elements (Wang and Peters 2006)

Decomposition of scalar fields into ensembles of gradient trajectories that share the same minima/maxima points Parameterization by individual length ℓ and scalar difference $\Delta \phi$

Present Approach: Linear Line Segments Decomposition of the turbulent signal along a straight line

Linear Line Segments – Decomposition of the Turbulent Signal

Decompose the turbulent signal along a straight line into linear segments between local minimum and maximum points

- Linear length ℓ
- Scalar difference $\Delta \phi$

Additionally: mean gradient
$$g = \frac{\Delta q}{\ell}$$

Direct Numerical Simulation of Turbulent Mixing

- Incompressible Navier-Stokes equations + passive scalar with imposed mean gradient
- Pseudo-spectral method in triply periodic box
- DNS conducted on JUQUEEN (IBM BlueGene/Q) with up to 524,288 threads

	R0	R1	R2	R3	R4	R5
Ν	512	1024	1024	2048	2048	4096
Re _λ	88	119	184	215	331	529
ν	0.01	0.0055	0.0025	0.0019	0.0010	0.00048
$\kappa_{\max}\eta$	3.57	4.54	2.66	4.01	2.30	2.70
$S(\partial_{\parallel}\phi)$	1.65	1.73	1.60	1.55	1.56	1.36
$S(\partial_L u)$	-0.52	-0.54	-0.55	-0.57	-0.59	-0.64
$t_{\rm avg}/\tau$	100	30	30	10	10	2
ensembles	189	62	61	10	10	5

45 million core hours computational time for all cases

Normalized Marginal pdf $P(\ell)$

pdf of normalized length becomes **quasi-universal** when normalized by the mean length ℓ_m .

Scaling of the Mean Length ℓ_m with Reynolds Number

Scaling of the mean length
$$\ell_m$$
 with the Kolmogorov length $\eta \Rightarrow \left| \frac{\ell_m}{\eta} \approx 10.5 \right|$

Statistical Description

Joint pdf $P(\Delta \phi, \ell)$ and $P(g, \ell)$ for positive and negative segments

Relation between $P(\Delta \phi, \ell)$ and $P(g, \ell)$:

$$P_{\ell g}(\ell, g) = \int_{-\infty}^{\infty} \delta\left(g - \frac{\Delta\phi}{\ell}\right) P_{\ell\Delta\phi}(\ell, \Delta\phi) d(\Delta\phi)$$
$$= \int_{-\infty}^{\infty} \ell\delta\left(g\ell - \Delta\phi\right) P_{\ell\Delta\phi}(\ell, \Delta\phi) d(\Delta\phi) = \ell P_{\ell\Delta\phi}(\ell, g\ell)$$

Comparison of Conditional Moments with Classical Structure Functions

Relation to jpdf:
$$P(\Delta \phi | \ell) = \frac{P(\Delta \phi, \ell)}{P(\ell)}$$

• Conditional moments: $\langle (\Delta \phi)^n | \ell \rangle = \int (\Delta \phi)^n P(\Delta \phi | \ell) d(\Delta \phi)$

- Conventional structure function: $\langle (\Delta \phi)^2 \rangle (\mathbf{r}) = \langle (\phi(\mathbf{x} + \mathbf{r}) \phi(\mathbf{x}))^2 \rangle$
- Conditional mean of line segments: $\langle (\Delta \phi)^2 | \ell \rangle$

Structure Function Analysis

*n*th moment of $\Delta \phi$ can be written as

$$\langle (\Delta \phi)^n \rangle = F_n(\operatorname{Re}_r, \operatorname{Pe}) \langle \chi \rangle^{n/2} \langle \varepsilon \rangle^{-n/6} r^{n/3}$$

Scaling of *n*th order structure function in the inertial range: $\frac{\langle (\Delta \phi)^n \rangle}{\langle \chi \rangle^{n/2} \langle \varepsilon \rangle^{-n/6} r^{n/3}} = c_n$

Conditional Mean of Line Segments

Scaling of *n*th order conditional mean in the inertial range: $\frac{\langle (\Delta \phi)^n | \ell \rangle}{\langle \chi \rangle^{n/2} \langle \varepsilon \rangle^{-n/6} r^{n/3}} = c_n$

c₂ is quasi-universal, c₄ is not universal

Scaling of c₄ with Reynolds number

For structure function:
$$c_4 = 15 \operatorname{Re}_{\lambda}^{0.4}$$

For line segments: $c_4 = 10 \operatorname{Re}_{\lambda}^{0.4}$

Higher Order Statistics

Normalized marginal pdf of local gradient $\partial_x \phi$ and $g = \Delta \phi / \ell$

stretched exponential tails, more stretched with increasing Reynolds number

- strong deviations from Gaussianity
- $\square P_{\partial_x \phi}(x) = c \exp(-\alpha x^{\beta})$
- $\blacksquare \Rightarrow P(\partial_x \phi) \text{ has longer tails than } P(g)$

Higher Order Statistics

Scaling of Flatness and Hyperflatness with Reynolds number

Flatness:
$$F(\phi_x) = \frac{\langle \phi_x^4 \rangle}{\langle \phi_x^2 \rangle^2}$$
 and $F(g) = \frac{\langle g^4 \rangle}{\langle g^2 \rangle^2}$
Hyper-flatness: $HF(\phi_x) = \frac{\langle \phi_x^6 \rangle}{\langle \phi_x^2 \rangle^3}$ and $F(g) = \frac{\langle g^6 \rangle}{\langle g^2 \rangle^3}$

$$F_{\phi_x} = 1.42 \operatorname{Re}_{\lambda}^{0.5} \text{ and } HF_{\phi_x} = 3.6 \operatorname{Re}_{\lambda}^{1.15}$$
$$F_{g_x} = 0.74 \operatorname{Re}_{\lambda}^{0.5} \text{ and } HF_{g_x} = 0.91 \operatorname{Re}_{\lambda}^{1.15}$$

Scale Similarity of Local and Mean Gradients

Ratio of the *n*th order moments of ϕ_x and *g*

$$c_n = \frac{\langle |\phi_x|^n \rangle}{\langle |g|^n \rangle} \ge 1 \tag{1}$$

$$\frac{\langle \phi_x^{2n} \rangle}{\langle g^{2n} \rangle} = \frac{\langle (\phi_x / \sigma_{\phi_x})^{2n} \rangle}{\langle (g / \sigma_{\phi_g})^{2n} \rangle} \left(\frac{\langle \phi_x^2 \rangle}{\langle g^2 \rangle} \right)^n \propto \frac{\operatorname{Re}_{\lambda}^{m_{\phi_x}(2n)}}{\operatorname{Re}_{\lambda}^{m_g(2n)}} c_2^n \neq f(\operatorname{Re}_{\lambda}),$$
(2)

$\operatorname{Re}_{\lambda}$	119	184	215	331	529
<i>c</i> ₁	1.00	1.00	1.00	1.00	1.00
<i>c</i> ₂	1.51	1.52	1.53	1.52	1.52
<i>C</i> ₃	2.72	2.76	2.82	2.84	2.82
c_4	5.23	5.35	5.58	5.56	5.46
c_5	10.22	10.44	11.26	11.03	10.49
<i>c</i> ₆	19.88	20.07	22.82	21.23	19.50

 \Rightarrow Scale similarity

Cliff-Ramp Structures

- Skewness in scalar derivative
- Consider line segments in direction of mean scalar gradient

Cliff-Ramp Structures

Scalar field exhibits skewness

Consider line segments in direction of mean scalar gradient

Cliff-Ramp Structures

• ℓ_m^-/ℓ_m^+ tends to unity for $Re_\lambda \to \infty$

Ratio ℓ_m^-/ℓ_m^+ can be understood as surrogate for gradient skewness

Summary and Conclusion

- We proposed a decomposition of the turbulent field based on minimal/maxima points
- Mean length ℓ_m scales with Kolmogorov lenght η
- **Scale similarity** between the moments of ϕ_x and g
- Line Segments helps to understand scalar skewness