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Motivation — Two-Point Statistics in Turbulent Flows

m Turbulent flows are non-linear with a strong interaction between various scales

m Description by two-point statistics

Kolmogorov/Yaglom theory:
Define velocity or scalar increment: Ag = ¢(x + r) — ¢(x)
Yaglom equation: —((Au)(Ag)*) = 2(x)r Bmax
Komogorov equation: —{(Au)®) = ‘g‘(s)r 1

Dissipation Elements (Wang and Peters 2006)
Decomposition of scalar fields into ensembles of
gradient trajectories that share the same minima/maxima points
Parameterization by individual length £ and scalar difference A¢

Present Approach: Linear Line Segments Decomposition of the turbulent signal
along a straight line
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Linear Line Segments — Decomposition of the Turbulent Signal
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m Decompose the turbulent signal along a straight line into linear segments between
local minimum and maximum points

m Linear length ¢

m Scalar difference A¢

A
m Additionally: mean gradient g = 7¢
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Direct Numerical Simulation of Turbulent Mixing

m Incompressible Navier-Stokes equations + passive scalar with imposed mean gradient
m Pseudo-spectral method in triply periodic box
m DNS conducted on JUQUEEN (IBM BlueGene/Q) with up to 524,288 threads

RO R1 R2 R3 R4 RS

N 512 1024 1024 2048 2048 4096
Re; 88 119 184 215 331 529

v 0.01 0.0055 0.0025 0.0019 0.0010 0.00048
KmaxT] 3.57 454 2.66 4.01 2.30 2.70
S(04) 1.65 1.73 1.60 1.55 1.56 1.36
NG 052 -0.54  -0.55 -0.57  -0.59 -0.64
tove T 100 30 30 10 10 2
ensembles 189 62 61 10 10 5

m 45 million core hours computational time for all cases
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Normalized Marginal pdf P(¢)
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m pdf of normalized length becomes quasi-universal when normalized by the mean
length ¢,,.
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Scaling of the Mean Length ¢, with Reynolds Number
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m Scaling of the mean length £, with the Kolmogorov length n =
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of Turbulent Mixing by Means of Turbulent Line Segments
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Statistical Description

Joint pdf P(A¢, €) and P(g, {) for positive and negative segments

€/tm

Relation between P(A¢, €) and P(g, {):
o A
Py (L, ) = f 5(8 - TQS)Pma(f, Ag)d(Ad)

- f (6 (30 — AD) Pusg (6. AD)AAD) = € Pong(L. 50)
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Comparison of Conditional Moments with Classical Structure Functions

P(Ag, 0)
P(0)
m Conditional moments: ((A¢)"|€) = f(Aq))”P(Aqblf)d(Aqﬁ)

m Relation to jpdf: P(A¢lf) =

10! T T T
10°
10~
102
) ) o 0P
w3k / — ((A02le/m)/(6*) 7
s —((4¢)%) (r/n) /{s?)
104 L& . : l
100 10t 10% 10°
r/n, £/

m Conventional structure function: ((A¢)*)(r) = {(¢(x + 1) — $(x))?)
m Conditional mean of line segments: {(A¢)?|£)

RWTH Aachen Uni ity | Statistical igation of Turbulent Mixing by Means of Turbulent Line Segments

8/18



Structure Function Analysis

nth moment of A¢ can be written as
((Ag)") = Fy(Re,, Pe)<)(>”/2<8>—n/6rn/3
((Ag)")

Scaling of nth order structure function in the inertial range: W =c,
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Conditional Mean of Line Segments
((Ag)"[£)

Scaling of nth order conditional mean in the inertial range: O ey TerT =c,
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B ¢, is quasi-universal, ¢, is not universal
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Scaling of ¢4 with Reynolds number
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m For structure function: ¢4 = 15Re}*

m For line segments: ¢4 = IORf:g‘4
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Higher Order Statistics
Normalized marginal pdf of local gradient d,¢ and g = A¢/(
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m stretched exponential tails, more stretched with increasing Reynolds number
m strong deviations from Gaussianity

B Py 4(x) = cexp(—axP)

B = P(0,¢) has longer tails than P(g)

RWTH Aachen Uni ity | Statistical igation of Turbulent Mixing by Means of Turbulent Line Segments 12/18



Higher Order Statistics

Scaling of Flatness and Hyperflatness with Reynolds number

m Flatness: F(¢,) = (<¢¢2X2 and F(g)

m Hyper-flatness: HF (¢,) =

(gz>2

and F(g) = <<—>
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m Fy = 1.42Re}° and HF,, = 3.6Re}"”
m F, =0.74Re})’ and HF,, = 0.91Re}"”
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Scale Similarity of Local and Mean Gradients
Ratio of the nth order moments of ¢, and g
o = (o™ 1
(Igi™

@) _ (@76 (<¢i>)” . R
()  (glos ™ \(g)] — Re™™

(2n)

c; # f(Rey),

Re, 119 184 215 331 529

i 1.00 1.00 1.00 1.00 1.00
c 1.51 1.52 1.53 1.52 1.52
c3 2.72 2.76 2.82 2.84 2.82
C4 5.23 5.35 5.58 5.56 5.46
Cs 10.22 1044 11.26 11.03 10.49
Ce 19.88 20.07 22.82 21.23 19.50

= Scale similarity

RWTH Aachen University | Statistical Investigation of Turbulent Mixing by Means of Turbulent Line Segments

14/18



Cliff-Ramp Structures

m Skewness in scalar derivative

m Consider line segments in direction of mean scalar gradient
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Cliff-Ramp Structures

m Scalar field exhibits skewness

m Consider line segments in direction of mean scalar gradient
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Cliff-Ramp Structures

46 <0, ydiscction (Ag11A¢ > 0) > (|AG| [Ag < 0)
5| —— Aé >0, y-direction
- - - - all segments
. 1 °°
: o= f IAGIP(AGI(AS) >
= 0
3t Lo
- f IAGIPASAAP).
00 10 20 30 40 50 j(; |A¢|P(A¢)d(A¢)
o f; IAGIP(AGAAG)
Re;, 88 119 184 215 331 529 i_'i’ > 1

€/6, 145 139 131 126 124 1.14
S(¢,) 165 173 160 155 156 1.36

m (/¢ tends to unity for Re; — oo

m Ratio £, /¢ can be understood as surrogate for gradient skewness
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Summary and Conclusion

m We proposed a decomposition of the turbulent field based on minimal/maxima
points

m Mean length ¢, scales with Kolmogorov lenght i
m Scale similarity between the moments of ¢, and g

m Line Segments helps to understand scalar skewness
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