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Motivation – Two-Point Statistics in Turbulent Flows

Turbulent flows are non-linear with a strong interaction between various scales

Description by two-point statistics

1 Kolmogorov/Yaglom theory:
Define velocity or scalar increment: ∆φ = φ(x + r) − φ(x)
Yaglom equation: −〈(∆u)(∆φ)2〉 = 2

3 〈χ〉r
Komogorov equation: −〈(∆u)3〉 = 4

5 〈ε〉r

2 Dissipation Elements (Wang and Peters 2006)
Decomposition of scalar fields into ensembles of
gradient trajectories that share the same minima/maxima points
Parameterization by individual length ` and scalar difference ∆φ

3 Present Approach: Linear Line Segments Decomposition of the turbulent signal
along a straight line
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Linear Line Segments – Decomposition of the Turbulent Signal

Decompose the turbulent signal along a straight line into linear segments between
local minimum and maximum points

Linear length `

Scalar difference ∆φ

Additionally: mean gradient g =
∆φ

`

RWTH Aachen University | Statistical Investigation of Turbulent Mixing by Means of Turbulent Line Segments 3/18



Direct Numerical Simulation of Turbulent Mixing

Incompressible Navier-Stokes equations + passive scalar with imposed mean gradient

Pseudo-spectral method in triply periodic box

DNS conducted on JUQUEEN (IBM BlueGene/Q) with up to 524,288 threads

R0 R1 R2 R3 R4 R5

N 512 1024 1024 2048 2048 4096

Reλ 88 119 184 215 331 529

ν 0.01 0.0055 0.0025 0.0019 0.0010 0.00048

κmaxη 3.57 4.54 2.66 4.01 2.30 2.70

S (∂‖φ) 1.65 1.73 1.60 1.55 1.56 1.36

S (∂Lu) -0.52 -0.54 -0.55 -0.57 -0.59 -0.64

tavg/τ 100 30 30 10 10 2

ensembles 189 62 61 10 10 5

45 million core hours computational time for all cases
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Normalized Marginal pdf P(`)
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pdf of normalized length becomes quasi-universal when normalized by the mean
length `m.
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Scaling of the Mean Length `m with Reynolds Number
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Scaling of the mean length `m with the Kolmogorov length η⇒
`m
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≈ 10.5
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Statistical Description

Joint pdf P(∆φ, `) and P(g, `) for positive and negative segments
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Relation between P(∆φ, `) and P(g, `):

P`g(`, g) =

∫ ∞

−∞

δ

(
g −

∆φ

`

)
P`∆φ(`,∆φ)d(∆φ)

=

∫ ∞

−∞

`δ (g` − ∆φ) P`∆φ(`,∆φ)d(∆φ) = ` P`∆φ(`, g`)
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Comparison of Conditional Moments with Classical Structure Functions

Relation to jpdf: P(∆φ|`) =
P(∆φ, `)

P(`)

Conditional moments: 〈(∆φ)n|`〉 =
∫

(∆φ)nP(∆φ|`)d(∆φ)

100 101 102 10310−4

10−3

10−2

10−1

100

101

2

∝ `5

2

∝ r0.6

∝ r2

∝ `0.8

r/η, `/η

〈
(∆φ)2|`/η

〉
/
〈
φ2

〉
〈

(∆φ)2
〉(
r/η

)
/
〈
φ2

〉

Conventional structure function: 〈(∆φ)2〉(r) = 〈(φ(x + r) − φ(x))2〉

Conditional mean of line segments: 〈(∆φ)2|`〉
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Structure Function Analysis

nth moment of ∆φ can be written as

〈(∆φ)n〉 = Fn(Rer,Pe)〈χ〉n/2〈ε〉−n/6rn/3

Scaling of nth order structure function in the inertial range:
〈(∆φ)n〉

〈χ〉n/2〈ε〉−n/6rn/3 = cn
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Conditional Mean of Line Segments

Scaling of nth order conditional mean in the inertial range:
〈(∆φ)n|`〉

〈χ〉n/2〈ε〉−n/6rn/3 = cn
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c2 is quasi-universal, c4 is not universal
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Scaling of c4 with Reynolds number
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Higher Order Statistics
Normalized marginal pdf of local gradient ∂xφ and g = ∆φ/`
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stretched exponential tails, more stretched with increasing Reynolds number

strong deviations from Gaussianity

P∂xφ(x) = c exp(−αxβ)

⇒ P(∂xφ) has longer tails than P(g)
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Higher Order Statistics
Scaling of Flatness and Hyperflatness with Reynolds number

Flatness: F(φx) =
〈φ4

x〉

〈φ2
x〉

2 and F(g) =
〈g4〉

〈g2〉2

Hyper-flatness: HF(φx) =
〈φ6

x〉

〈φ2
x〉

3 and F(g) =
〈g6〉

〈g2〉3
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Scale Similarity of Local and Mean Gradients

Ratio of the nth order moments of φx and g

cn =
〈|φx|

n〉

〈|g|n〉
≥ 1 (1)

〈φ2n
x 〉

〈g2n〉
=
〈(φx/σφx )2n〉

〈(g/σφg )2n〉

(
〈φ2

x〉

〈g2〉

)n

∝
Remφx (2n)

λ

Remg(2n)
λ

cn
2 , f (Reλ) , (2)

Reλ 119 184 215 331 529

c1 1.00 1.00 1.00 1.00 1.00
c2 1.51 1.52 1.53 1.52 1.52
c3 2.72 2.76 2.82 2.84 2.82
c4 5.23 5.35 5.58 5.56 5.46
c5 10.22 10.44 11.26 11.03 10.49
c6 19.88 20.07 22.82 21.23 19.50

⇒ Scale similarity
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Cliff-Ramp Structures

Skewness in scalar derivative

Consider line segments in direction of mean scalar gradient
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Cliff-Ramp Structures

Scalar field exhibits skewness

Consider line segments in direction of mean scalar gradient
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Cliff-Ramp Structures
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Reλ 88 119 184 215 331 529

`−m/`
+
m 1.45 1.39 1.31 1.26 1.24 1.14

S (φy) 1.65 1.73 1.60 1.55 1.56 1.36

〈|∆φ| |∆φ > 0〉 ≥ 〈|∆φ| |∆φ < 0〉 (3)

1
N+

∫ ∞

0
|∆φ|P(∆φ)d(∆φ) ≥

1
N−

∫ 0

−∞

|∆φ|P(∆φ)d(∆φ) ,
(4)

N−
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∫ ∞
0
|∆φ|P(∆φ)d(∆φ)∫ 0

−∞
|∆φ|P(∆φ)d(∆φ)

= 1 (5)

`−m
`+

m
≥ 1 (6)

`−m/`
+
m tends to unity for Reλ → ∞

Ratio `−m/`
+
m can be understood as surrogate for gradient skewness
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Summary and Conclusion

We proposed a decomposition of the turbulent field based on minimal/maxima
points

Mean length `m scales with Kolmogorov lenght η

Scale similarity between the moments of φx and g

Line Segments helps to understand scalar skewness
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